HepLean Documentation
Aesop
.
BuiltinRules
Search
Google site search
return to top
source
Imports
Init
Aesop.BuiltinRules.ApplyHyps
Aesop.BuiltinRules.Assumption
Aesop.BuiltinRules.DestructProducts
Aesop.BuiltinRules.Ext
Aesop.BuiltinRules.Intros
Aesop.BuiltinRules.Rfl
Aesop.BuiltinRules.Split
Aesop.BuiltinRules.Subst
Aesop.Frontend.Attribute
Imported by
Aesop
.
BuiltinRules
.
not_intro
Aesop
.
BuiltinRules
.
empty_false
Aesop
.
BuiltinRules
.
pEmpty_false
Aesop
.
BuiltinRules
.
heq_iff_eq
source
theorem
Aesop
.
BuiltinRules
.
not_intro
{P :
Prop
}
(h :
P
→
False
)
:
¬
P
source
theorem
Aesop
.
BuiltinRules
.
empty_false
(h :
Empty
)
:
False
source
theorem
Aesop
.
BuiltinRules
.
pEmpty_false
(h :
PEmpty
)
:
False
source
theorem
Aesop
.
BuiltinRules
.
heq_iff_eq
{α :
Sort
u_1}
(x :
α
)
(y :
α
)
:
HEq
x
y
↔
x
=
y