HepLean Documentation

HepLean.AnomalyCancellation.MSSMNu.Basic

The MSSM with 3 families and RHNs #

We define the system of ACCs for the MSSM with 3 families and RHNs. We define the system of charges for 1-species. We prove some basic lemmas about them.

The vector space of charges corresponding to the MSSM fermions.

Equations
Instances For
    @[simp]
    theorem MSSMCharges_numberCharges :
    MSSMCharges.numberCharges = 20

    The vector spaces of charges of one species of fermions in the MSSM.

    Equations
    Instances For
      @[simp]
      theorem MSSMSpecies_numberCharges :
      MSSMSpecies.numberCharges = 3

      An equivalence between MSSMCharges.charges and the space of maps (Fin 18 ⊕ Fin 2 → ℚ). The first 18 factors corresponds to the SM fermions, while the last two are the higgsions.

      Equations
      Instances For
        @[simp]
        theorem MSSMCharges.toSMPlusH_symm_apply (a✝ : Fin 18 Fin 2) (a✝¹ : Fin (18 + 2)) :
        MSSMCharges.toSMPlusH.symm a✝ a✝¹ = a✝ (finSumFinEquiv.symm a✝¹)
        @[simp]
        theorem MSSMCharges.toSMPlusH_apply (a✝ : Fin (18 + 2)) (a✝¹ : Fin 18 Fin 2) :
        MSSMCharges.toSMPlusH a✝ a✝¹ = a✝ (finSumFinEquiv a✝¹)
        def MSSMCharges.splitSMPlusH :
        (Fin 18 Fin 2) (Fin 18) × (Fin 2)

        An equivalence between Fin 18 ⊕ Fin 2 → ℚ and (Fin 18 → ℚ) × (Fin 2 → ℚ).

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem MSSMCharges.splitSMPlusH_apply (f : Fin 18 Fin 2) :
          MSSMCharges.splitSMPlusH f = (f Sum.inl, f Sum.inr)
          @[simp]
          theorem MSSMCharges.splitSMPlusH_symm_apply (f : (Fin 18) × (Fin 2)) (a✝ : Fin 18 Fin 2) :
          MSSMCharges.splitSMPlusH.symm f a✝ = Sum.elim f.1 f.2 a✝
          def MSSMCharges.toSplitSMPlusH :
          MSSMCharges.Charges (Fin 18) × (Fin 2)

          An equivalence between MSSMCharges.charges and (Fin 18 → ℚ) × (Fin 2 → ℚ). This splits the charges up into the SM and the additional ones for the MSSM.

          Equations
          Instances For
            @[simp]
            theorem MSSMCharges.toSplitSMPlusH_apply (a✝ : MSSMCharges.Charges) :
            MSSMCharges.toSplitSMPlusH a✝ = (MSSMCharges.toSMPlusH a✝ Sum.inl, MSSMCharges.toSMPlusH a✝ Sum.inr)
            def MSSMCharges.toSpeciesMaps' :
            (Fin 18) (Fin 6Fin 3)

            An equivalence between (Fin 18 → ℚ) and (Fin 6 → Fin 3 → ℚ).

            Equations
            Instances For
              @[simp]
              theorem MSSMCharges.toSpeciesMaps'_apply (a✝ : Fin (6 * 3)) (a✝¹ : Fin 6) (a✝² : Fin 3) :
              MSSMCharges.toSpeciesMaps' a✝ a✝¹ a✝² = a✝ (finProdFinEquiv (a✝¹, a✝²))
              @[simp]
              theorem MSSMCharges.toSpeciesMaps'_symm_apply (a✝ : Fin 6Fin 3) (a✝¹ : Fin (6 * 3)) :
              MSSMCharges.toSpeciesMaps'.symm a✝ a✝¹ = a✝ a✝¹.divNat a✝¹.modNat
              def MSSMCharges.toSpecies :
              MSSMCharges.Charges (Fin 6Fin 3) × (Fin 2)

              An equivalence between MSSMCharges.charges and (Fin 6 → Fin 3 → ℚ) × (Fin 2 → ℚ)). This splits charges up into the SM and additional fermions, and further splits the SM into species.

              Equations
              Instances For
                @[simp]
                theorem MSSMCharges.toSpecies_apply (a✝ : MSSMCharges.Charges) :
                MSSMCharges.toSpecies a✝ = (MSSMCharges.toSpeciesMaps' (MSSMCharges.toSMPlusH a✝ Sum.inl), MSSMCharges.toSMPlusH a✝ Sum.inr)

                For a given i ∈ Fin 6 the projection of MSSMCharges.charges down to the corresponding SM species of charges.

                Equations
                Instances For
                  @[simp]
                  theorem MSSMCharges.toSMSpecies_apply (i : Fin 6) (S : MSSMCharges.Charges) (a✝ : Fin 3) :
                  (MSSMCharges.toSMSpecies i) S a✝ = S (Fin.castAdd 2 (finProdFinEquiv (i, a✝)))
                  theorem MSSMCharges.toSMSpecies_toSpecies_inv (i : Fin 6) (f : (Fin 6Fin 3) × (Fin 2)) :
                  @[reducible, inline]

                  The Q charges as a map Fin 3 → ℚ.

                  Equations
                  Instances For
                    @[reducible, inline]

                    The U charges as a map Fin 3 → ℚ.

                    Equations
                    Instances For
                      @[reducible, inline]

                      The D charges as a map Fin 3 → ℚ.

                      Equations
                      Instances For
                        @[reducible, inline]

                        The L charges as a map Fin 3 → ℚ.

                        Equations
                        Instances For
                          @[reducible, inline]

                          The E charges as a map Fin 3 → ℚ.

                          Equations
                          Instances For
                            @[reducible, inline]

                            The N charges as a map Fin 3 → ℚ.

                            Equations
                            Instances For

                              The charge Hd.

                              Equations
                              Instances For
                                @[simp]
                                theorem MSSMCharges.Hd_apply (S : MSSMCharges.Charges) :
                                MSSMCharges.Hd S = S 18, MSSMCharges.Hd.proof_1

                                The charge Hu.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem MSSMCharges.Hu_apply (S : MSSMCharges.Charges) :
                                  MSSMCharges.Hu S = S 19, MSSMCharges.Hu.proof_1
                                  theorem MSSMCharges.charges_eq_toSpecies_eq (S T : MSSMCharges.Charges) :
                                  S = T (∀ (i : Fin 6), (MSSMCharges.toSMSpecies i) S = (MSSMCharges.toSMSpecies i) T) MSSMCharges.Hd S = MSSMCharges.Hd T MSSMCharges.Hu S = MSSMCharges.Hu T
                                  theorem MSSMCharges.Hd_toSpecies_inv (f : (Fin 6Fin 3) × (Fin 2)) :
                                  MSSMCharges.Hd (MSSMCharges.toSpecies.symm f) = f.2 0
                                  theorem MSSMCharges.Hu_toSpecies_inv (f : (Fin 6Fin 3) × (Fin 2)) :
                                  MSSMCharges.Hu (MSSMCharges.toSpecies.symm f) = f.2 1

                                  The gravitational anomaly equation.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For
                                    theorem MSSMACCs.accGrav_ext {S T : MSSMCharges.Charges} (hj : ∀ (j : Fin 6), i : Fin MSSMSpecies.numberCharges, (MSSMCharges.toSMSpecies j) S i = i : Fin MSSMSpecies.numberCharges, (MSSMCharges.toSMSpecies j) T i) (hd : MSSMCharges.Hd S = MSSMCharges.Hd T) (hu : MSSMCharges.Hu S = MSSMCharges.Hu T) :
                                    MSSMACCs.accGrav S = MSSMACCs.accGrav T

                                    Extensionality lemma for accGrav.

                                    The anomaly cancellation condition for SU(2) anomaly.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For
                                      theorem MSSMACCs.accSU2_ext {S T : MSSMCharges.Charges} (hj : ∀ (j : Fin 6), i : Fin MSSMSpecies.numberCharges, (MSSMCharges.toSMSpecies j) S i = i : Fin MSSMSpecies.numberCharges, (MSSMCharges.toSMSpecies j) T i) (hd : MSSMCharges.Hd S = MSSMCharges.Hd T) (hu : MSSMCharges.Hu S = MSSMCharges.Hu T) :
                                      MSSMACCs.accSU2 S = MSSMACCs.accSU2 T

                                      Extensionality lemma for accSU2.

                                      The anomaly cancellation condition for SU(3) anomaly.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        theorem MSSMACCs.accSU3_ext {S T : MSSMCharges.Charges} (hj : ∀ (j : Fin 6), i : Fin MSSMSpecies.numberCharges, (MSSMCharges.toSMSpecies j) S i = i : Fin MSSMSpecies.numberCharges, (MSSMCharges.toSMSpecies j) T i) :
                                        MSSMACCs.accSU3 S = MSSMACCs.accSU3 T

                                        Extensionality lemma for accSU3.

                                        The ACC for .

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          theorem MSSMACCs.accYY_ext {S T : MSSMCharges.Charges} (hj : ∀ (j : Fin 6), i : Fin MSSMSpecies.numberCharges, (MSSMCharges.toSMSpecies j) S i = i : Fin MSSMSpecies.numberCharges, (MSSMCharges.toSMSpecies j) T i) (hd : MSSMCharges.Hd S = MSSMCharges.Hd T) (hu : MSSMCharges.Hu S = MSSMCharges.Hu T) :
                                          MSSMACCs.accYY S = MSSMACCs.accYY T

                                          Extensionality lemma for accGrav.

                                          The symmetric bilinear function used to define the quadratic ACC.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For
                                            @[simp]
                                            theorem MSSMACCs.quadBiLin_toFun_apply (S T : MSSMCharges.Charges) :
                                            (MSSMACCs.quadBiLin S) T = x : Fin 3, (S (Fin.castAdd 2 (finProdFinEquiv (0, x))) * T (Fin.castAdd 2 (finProdFinEquiv (0, x))) + -(2 * (S (Fin.castAdd 2 (finProdFinEquiv (1, x))) * T (Fin.castAdd 2 (finProdFinEquiv (1, x))))) + S (Fin.castAdd 2 (finProdFinEquiv (2, x))) * T (Fin.castAdd 2 (finProdFinEquiv (2, x))) + -(S (Fin.castAdd 2 (finProdFinEquiv (3, x))) * T (Fin.castAdd 2 (finProdFinEquiv (3, x)))) + S (Fin.castAdd 2 (finProdFinEquiv (4, x))) * T (Fin.castAdd 2 (finProdFinEquiv (4, x)))) + (-(S 18, MSSMCharges.Hd.proof_1 * T 18, MSSMCharges.Hd.proof_1) + S 19, MSSMCharges.Hu.proof_1 * T 19, MSSMCharges.Hu.proof_1)

                                            The quadratic ACC.

                                            Equations
                                            Instances For
                                              theorem MSSMACCs.accQuad_ext {S T : MSSMCharges.Charges} (h : ∀ (j : Fin 6), i : Fin MSSMSpecies.numberCharges, ((fun (a : ) => a ^ 2) (MSSMCharges.toSMSpecies j) S) i = i : Fin MSSMSpecies.numberCharges, ((fun (a : ) => a ^ 2) (MSSMCharges.toSMSpecies j) T) i) (hd : MSSMCharges.Hd S = MSSMCharges.Hd T) (hu : MSSMCharges.Hu S = MSSMCharges.Hu T) :
                                              MSSMACCs.accQuad S = MSSMACCs.accQuad T

                                              Extensionality lemma for accQuad.

                                              The function underlying the symmetric trilinear form used to define the cubic ACC.

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For

                                                The symmetric trilinear form used to define the cubic ACC.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  @[simp]
                                                  theorem MSSMACCs.cubeTriLin_toFun_apply_apply (S S✝ T : MSSMCharges.Charges) :
                                                  ((MSSMACCs.cubeTriLin S) S✝) T = i : Fin 3, (6 * (S (Fin.castAdd 2 (finProdFinEquiv (0, i))) * S✝ (Fin.castAdd 2 (finProdFinEquiv (0, i))) * T (Fin.castAdd 2 (finProdFinEquiv (0, i)))) + 3 * (S (Fin.castAdd 2 (finProdFinEquiv (1, i))) * S✝ (Fin.castAdd 2 (finProdFinEquiv (1, i))) * T (Fin.castAdd 2 (finProdFinEquiv (1, i)))) + 3 * (S (Fin.castAdd 2 (finProdFinEquiv (2, i))) * S✝ (Fin.castAdd 2 (finProdFinEquiv (2, i))) * T (Fin.castAdd 2 (finProdFinEquiv (2, i)))) + 2 * (S (Fin.castAdd 2 (finProdFinEquiv (3, i))) * S✝ (Fin.castAdd 2 (finProdFinEquiv (3, i))) * T (Fin.castAdd 2 (finProdFinEquiv (3, i)))) + S (Fin.castAdd 2 (finProdFinEquiv (4, i))) * S✝ (Fin.castAdd 2 (finProdFinEquiv (4, i))) * T (Fin.castAdd 2 (finProdFinEquiv (4, i))) + S (Fin.castAdd 2 (finProdFinEquiv (5, i))) * S✝ (Fin.castAdd 2 (finProdFinEquiv (5, i))) * T (Fin.castAdd 2 (finProdFinEquiv (5, i)))) + (2 * S 18, MSSMCharges.Hd.proof_1 * S✝ 18, MSSMCharges.Hd.proof_1 * T 18, MSSMCharges.Hd.proof_1 + 2 * S 19, MSSMCharges.Hu.proof_1 * S✝ 19, MSSMCharges.Hu.proof_1 * T 19, MSSMCharges.Hu.proof_1)

                                                  The cubic ACC.

                                                  Equations
                                                  Instances For
                                                    theorem MSSMACCs.accCube_ext {S T : MSSMCharges.Charges} (h : ∀ (j : Fin 6), i : Fin MSSMSpecies.numberCharges, ((fun (a : ) => a ^ 3) (MSSMCharges.toSMSpecies j) S) i = i : Fin MSSMSpecies.numberCharges, ((fun (a : ) => a ^ 3) (MSSMCharges.toSMSpecies j) T) i) (hd : MSSMCharges.Hd S = MSSMCharges.Hd T) (hu : MSSMCharges.Hu S = MSSMCharges.Hu T) :
                                                    MSSMACCs.accCube S = MSSMACCs.accCube T

                                                    Extensionality lemma for accCube.

                                                    The ACCSystem for the MSSM without RHN.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      @[simp]
                                                      theorem MSSMACC_quadraticACCs (i : Fin 1) :
                                                      MSSMACC.quadraticACCs i = match i with | 0 => MSSMACCs.quadBiLin.toHomogeneousQuad
                                                      @[simp]
                                                      theorem MSSMACC_numberQuadratic :
                                                      MSSMACC.numberQuadratic = 1
                                                      @[simp]
                                                      theorem MSSMACC_cubicACC_apply (S : MSSMCharges.Charges) :
                                                      MSSMACC.cubicACC S = i : Fin 3, (6 * (S (Fin.castAdd 2 (finProdFinEquiv (0, i))) * S (Fin.castAdd 2 (finProdFinEquiv (0, i))) * S (Fin.castAdd 2 (finProdFinEquiv (0, i)))) + 3 * (S (Fin.castAdd 2 (finProdFinEquiv (1, i))) * S (Fin.castAdd 2 (finProdFinEquiv (1, i))) * S (Fin.castAdd 2 (finProdFinEquiv (1, i)))) + 3 * (S (Fin.castAdd 2 (finProdFinEquiv (2, i))) * S (Fin.castAdd 2 (finProdFinEquiv (2, i))) * S (Fin.castAdd 2 (finProdFinEquiv (2, i)))) + 2 * (S (Fin.castAdd 2 (finProdFinEquiv (3, i))) * S (Fin.castAdd 2 (finProdFinEquiv (3, i))) * S (Fin.castAdd 2 (finProdFinEquiv (3, i)))) + S (Fin.castAdd 2 (finProdFinEquiv (4, i))) * S (Fin.castAdd 2 (finProdFinEquiv (4, i))) * S (Fin.castAdd 2 (finProdFinEquiv (4, i))) + S (Fin.castAdd 2 (finProdFinEquiv (5, i))) * S (Fin.castAdd 2 (finProdFinEquiv (5, i))) * S (Fin.castAdd 2 (finProdFinEquiv (5, i)))) + (2 * S 18, MSSMCharges.Hd.proof_1 * S 18, MSSMCharges.Hd.proof_1 * S 18, MSSMCharges.Hd.proof_1 + 2 * S 19, MSSMCharges.Hu.proof_1 * S 19, MSSMCharges.Hu.proof_1 * S 19, MSSMCharges.Hu.proof_1)
                                                      @[simp]
                                                      theorem MSSMACC_numberCharges :
                                                      MSSMACC.numberCharges = 20
                                                      @[simp]
                                                      theorem MSSMACC_numberLinear :
                                                      MSSMACC.numberLinear = 4
                                                      @[simp]
                                                      theorem MSSMACC_linearACCs (i : Fin 4) :
                                                      MSSMACC.linearACCs i = match i with | 0 => { toFun := fun (S : MSSMCharges.Charges) => i : Fin 3, (6 * S (Fin.castAdd 2 (finProdFinEquiv (0, i))) + 3 * S (Fin.castAdd 2 (finProdFinEquiv (1, i))) + 3 * S (Fin.castAdd 2 (finProdFinEquiv (2, i))) + 2 * S (Fin.castAdd 2 (finProdFinEquiv (3, i))) + S (Fin.castAdd 2 (finProdFinEquiv (4, i))) + S (Fin.castAdd 2 (finProdFinEquiv (5, i)))) + 2 * (S 18, MSSMCharges.Hd.proof_1 + S 19, MSSMCharges.Hu.proof_1), map_add' := MSSMACCs.accGrav.proof_1, map_smul' := MSSMACCs.accGrav.proof_2 } | 1 => { toFun := fun (S : MSSMCharges.Charges) => i : Fin 3, (3 * S (Fin.castAdd 2 (finProdFinEquiv (0, i))) + S (Fin.castAdd 2 (finProdFinEquiv (3, i)))) + S 18, MSSMCharges.Hd.proof_1 + S 19, MSSMCharges.Hu.proof_1, map_add' := MSSMACCs.accSU2.proof_1, map_smul' := MSSMACCs.accSU2.proof_2 } | 2 => { toFun := fun (S : MSSMCharges.Charges) => i : Fin 3, (2 * S (Fin.castAdd 2 (finProdFinEquiv (0, i))) + S (Fin.castAdd 2 (finProdFinEquiv (1, i))) + S (Fin.castAdd 2 (finProdFinEquiv (2, i)))), map_add' := MSSMACCs.accSU3.proof_1, map_smul' := MSSMACCs.accSU3.proof_2 } | 3 => { toFun := fun (S : MSSMCharges.Charges) => i : Fin 3, (S (Fin.castAdd 2 (finProdFinEquiv (0, i))) + 8 * S (Fin.castAdd 2 (finProdFinEquiv (1, i))) + 2 * S (Fin.castAdd 2 (finProdFinEquiv (2, i))) + 3 * S (Fin.castAdd 2 (finProdFinEquiv (3, i))) + 6 * S (Fin.castAdd 2 (finProdFinEquiv (4, i)))) + 3 * (S 18, MSSMCharges.Hd.proof_1 + S 19, MSSMCharges.Hu.proof_1), map_add' := MSSMACCs.accYY.proof_1, map_smul' := MSSMACCs.accYY.proof_2 }
                                                      theorem MSSMACC.quadSol (S : MSSMACC.QuadSols) :
                                                      MSSMACCs.accQuad S.val = 0
                                                      def MSSMACC.AnomalyFreeMk (S : MSSMACC.Charges) (hg : MSSMACCs.accGrav S = 0) (hsu2 : MSSMACCs.accSU2 S = 0) (hsu3 : MSSMACCs.accSU3 S = 0) (hyy : MSSMACCs.accYY S = 0) (hquad : MSSMACCs.accQuad S = 0) (hcube : MSSMACCs.accCube S = 0) :
                                                      MSSMACC.Sols

                                                      A solution from a charge satisfying the ACCs.

                                                      Equations
                                                      • MSSMACC.AnomalyFreeMk S hg hsu2 hsu3 hyy hquad hcube = { val := S, linearSol := , quadSol := , cubicSol := hcube }
                                                      Instances For
                                                        theorem MSSMACC.AnomalyFreeMk_val (S : MSSMACC.Charges) (hg : MSSMACCs.accGrav S = 0) (hsu2 : MSSMACCs.accSU2 S = 0) (hsu3 : MSSMACCs.accSU3 S = 0) (hyy : MSSMACCs.accYY S = 0) (hquad : MSSMACCs.accQuad S = 0) (hcube : MSSMACCs.accCube S = 0) :
                                                        (MSSMACC.AnomalyFreeMk S hg hsu2 hsu3 hyy hquad hcube).val = S
                                                        def MSSMACC.AnomalyFreeQuadMk' (S : MSSMACC.LinSols) (hquad : MSSMACCs.accQuad S.val = 0) :
                                                        MSSMACC.QuadSols

                                                        A QuadSol from a LinSol satisfying the quadratic ACC.

                                                        Equations
                                                        Instances For
                                                          def MSSMACC.AnomalyFreeMk' (S : MSSMACC.LinSols) (hquad : MSSMACCs.accQuad S.val = 0) (hcube : MSSMACCs.accCube S.val = 0) :
                                                          MSSMACC.Sols

                                                          A Sol from a LinSol satisfying the quadratic and cubic ACCs.

                                                          Equations
                                                          Instances For
                                                            def MSSMACC.AnomalyFreeMk'' (S : MSSMACC.QuadSols) (hcube : MSSMACCs.accCube S.val = 0) :
                                                            MSSMACC.Sols

                                                            A Sol from a QuadSol satisfying the cubic ACCs.

                                                            Equations
                                                            Instances For
                                                              theorem MSSMACC.AnomalyFreeMk''_val (S : MSSMACC.QuadSols) (hcube : MSSMACCs.accCube S.val = 0) :
                                                              (MSSMACC.AnomalyFreeMk'' S hcube).val = S.val

                                                              The dot product on the vector space of charges.

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For
                                                                @[simp]
                                                                theorem MSSMACC.dot_toFun_apply (S T : MSSMCharges.Charges) :
                                                                (MSSMACC.dot S) T = i : Fin 3, (S (Fin.castAdd 2 (finProdFinEquiv (0, i))) * T (Fin.castAdd 2 (finProdFinEquiv (0, i))) + S (Fin.castAdd 2 (finProdFinEquiv (1, i))) * T (Fin.castAdd 2 (finProdFinEquiv (1, i))) + S (Fin.castAdd 2 (finProdFinEquiv (2, i))) * T (Fin.castAdd 2 (finProdFinEquiv (2, i))) + S (Fin.castAdd 2 (finProdFinEquiv (3, i))) * T (Fin.castAdd 2 (finProdFinEquiv (3, i))) + S (Fin.castAdd 2 (finProdFinEquiv (4, i))) * T (Fin.castAdd 2 (finProdFinEquiv (4, i))) + S (Fin.castAdd 2 (finProdFinEquiv (5, i))) * T (Fin.castAdd 2 (finProdFinEquiv (5, i)))) + S 18, MSSMCharges.Hd.proof_1 * T 18, MSSMCharges.Hd.proof_1 + S 19, MSSMCharges.Hu.proof_1 * T 19, MSSMCharges.Hu.proof_1