Documentation

HepLean.SpaceTime.MinkowskiMetric

The Minkowski Metric #

This file introduces the Minkowski metric on spacetime in the mainly-minus signature.

We define the Minkowski metric as a bilinear map on the vector space of Lorentz vectors in d dimensions.

The definition of the Minkowski Matrix #

def minkowskiMatrix {d : } :
Matrix (Fin 1 Fin d) (Fin 1 Fin d)

The d.succ-dimensional real matrix of the form diag(1, -1, -1, -1, ...).

Equations
Instances For
    @[simp]
    theorem minkowskiMatrix.sq {d : } :
    minkowskiMatrix * minkowskiMatrix = 1
    @[simp]
    theorem minkowskiMatrix.eq_transpose {d : } :
    minkowskiMatrix.transpose = minkowskiMatrix
    @[simp]
    theorem minkowskiMatrix.det_eq_neg_one_pow_d {d : } :
    minkowskiMatrix.det = (-1) ^ d
    theorem minkowskiMatrix.as_block {d : } :
    minkowskiMatrix = Matrix.fromBlocks 1 0 0 (-1)
    @[simp]
    theorem minkowskiMatrix.off_diag_zero {d : } {μ : Fin 1 Fin d} {ν : Fin 1 Fin d} (h : μ ν) :

    The definition of the Minkowski Metric #

    @[simp]
    theorem minkowskiLinearForm_apply {d : } (v : LorentzVector d) (w : LorentzVector d) :
    (minkowskiLinearForm v) w = Matrix.dotProduct v (minkowskiMatrix.mulVec w)

    Given a Lorentz vector v we define the the linear map w ↦ v * η * w.

    Equations
    Instances For

      The Minkowski metric as a bilinear map.

      Equations
      Instances For

        Notation for minkowskiMetric.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For

          Equalitites involving the Minkowski metric #

          theorem minkowskiMetric.as_sum {d : } (v : LorentzVector d) (w : LorentzVector d) :
          (minkowskiMetric v) w = v.time * w.time - i : Fin d, v.space i * w.space i

          The Minkowski metric expressed as a sum.

          theorem minkowskiMetric.as_sum_self {d : } (v : LorentzVector d) :
          (minkowskiMetric v) v = v.time ^ 2 - v.space ^ 2

          The Minkowski metric expressed as a sum for a single vector.

          theorem minkowskiMetric.eq_time_minus_inner_prod {d : } (v : LorentzVector d) (w : LorentzVector d) :
          (minkowskiMetric v) w = v.time * w.time - v.space, w.space⟫_
          theorem minkowskiMetric.self_eq_time_minus_norm {d : } (v : LorentzVector d) :
          (minkowskiMetric v) v = v.time ^ 2 - v.space ^ 2
          theorem minkowskiMetric.symm {d : } (v : LorentzVector d) (w : LorentzVector d) :
          (minkowskiMetric v) w = (minkowskiMetric w) v

          The Minkowski metric is symmetric in its arguments..

          theorem minkowskiMetric.time_sq_eq_metric_add_space {d : } (v : LorentzVector d) :
          v.time ^ 2 = (minkowskiMetric v) v + v.space ^ 2

          Minkowski metric and space reflections #

          theorem minkowskiMetric.right_spaceReflection {d : } (v : LorentzVector d) (w : LorentzVector d) :
          (minkowskiMetric v) w.spaceReflection = v.time * w.time + v.space, w.space⟫_
          theorem minkowskiMetric.self_spaceReflection_eq_zero_iff {d : } (v : LorentzVector d) :
          (minkowskiMetric v) v.spaceReflection = 0 v = 0

          Non degeneracy of the Minkowski metric #

          theorem minkowskiMetric.nondegenerate {d : } (v : LorentzVector d) :
          (∀ (w : LorentzVector d), (minkowskiMetric w) v = 0) v = 0

          The metric tensor is non-degenerate.

          Inequalities involving the Minkowski metric #

          theorem minkowskiMetric.leq_time_sq {d : } (v : LorentzVector d) :
          (minkowskiMetric v) v v.time ^ 2
          theorem minkowskiMetric.ge_abs_inner_product {d : } (v : LorentzVector d) (w : LorentzVector d) :
          v.time * w.time - v.space, w.space⟫_ (minkowskiMetric v) w
          theorem minkowskiMetric.ge_sub_norm {d : } (v : LorentzVector d) (w : LorentzVector d) :
          v.time * w.time - v.space * w.space (minkowskiMetric v) w

          The Minkowski metric and matrices #

          def minkowskiMetric.dual {d : } (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) :
          Matrix (Fin 1 Fin d) (Fin 1 Fin d)

          The dual of a matrix with respect to the Minkowski metric.

          Equations
          Instances For
            @[simp]
            @[simp]
            theorem minkowskiMetric.dual_eta {d : } :
            minkowskiMetric.dual minkowskiMatrix = minkowskiMatrix
            @[simp]
            theorem minkowskiMetric.dual_transpose {d : } (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) :
            minkowskiMetric.dual Λ.transpose = (minkowskiMetric.dual Λ).transpose
            @[simp]
            theorem minkowskiMetric.det_dual {d : } (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) :
            (minkowskiMetric.dual Λ).det = Λ.det
            @[simp]
            theorem minkowskiMetric.dual_mulVec_right {d : } (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) {x : LorentzVector d} {y : Fin 1 Fin d} :
            (minkowskiMetric x) ((minkowskiMetric.dual Λ).mulVec y) = (minkowskiMetric (Λ.mulVec x)) y
            @[simp]
            theorem minkowskiMetric.dual_mulVec_left {d : } (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) {x : Fin 1 Fin d} {y : LorentzVector d} :
            (minkowskiMetric ((minkowskiMetric.dual Λ).mulVec x)) y = (minkowskiMetric x) (Λ.mulVec y)
            theorem minkowskiMetric.matrix_apply_eq_iff_sub {d : } (v : LorentzVector d) (w : LorentzVector d) (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) (Λ' : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) :
            (minkowskiMetric v) (Λ.mulVec w) = (minkowskiMetric v) (Λ'.mulVec w) (minkowskiMetric v) ((Λ - Λ').mulVec w) = 0
            theorem minkowskiMetric.matrix_eq_iff_eq_forall' {d : } (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) (Λ' : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) :
            (∀ (v : Fin 1 Fin d), Λ.mulVec v = Λ'.mulVec v) ∀ (w : Fin 1 Fin d) (v : LorentzVector d), (minkowskiMetric v) (Λ.mulVec w) = (minkowskiMetric v) (Λ'.mulVec w)
            theorem minkowskiMetric.matrix_eq_iff_eq_forall {d : } (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) (Λ' : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) :
            Λ = Λ' ∀ (w : Fin 1 Fin d) (v : LorentzVector d), (minkowskiMetric v) (Λ.mulVec w) = (minkowskiMetric v) (Λ'.mulVec w)
            theorem minkowskiMetric.matrix_eq_id_iff {d : } (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) :
            Λ = 1 ∀ (w : Fin 1 Fin d) (v : LorentzVector d), (minkowskiMetric v) (Λ.mulVec w) = (minkowskiMetric v) w

            The Minkowski metric and the standard basis #

            @[simp]
            theorem minkowskiMetric.basis_left {d : } (v : LorentzVector d) (μ : Fin 1 Fin d) :
            (minkowskiMetric (LorentzVector.stdBasis μ)) v = minkowskiMatrix μ μ * v μ
            theorem minkowskiMetric.on_timeVec {d : } :
            (minkowskiMetric LorentzVector.timeVec) LorentzVector.timeVec = 1
            theorem minkowskiMetric.on_basis_mulVec {d : } (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) (μ : Fin 1 Fin d) (ν : Fin 1 Fin d) :
            (minkowskiMetric (LorentzVector.stdBasis μ)) (Λ.mulVec (LorentzVector.stdBasis ν)) = minkowskiMatrix μ μ * Λ μ ν
            theorem minkowskiMetric.on_basis {d : } (μ : Fin 1 Fin d) (ν : Fin 1 Fin d) :
            (minkowskiMetric (LorentzVector.stdBasis μ)) (LorentzVector.stdBasis ν) = minkowskiMatrix μ ν
            theorem minkowskiMetric.matrix_apply_stdBasis {d : } (Λ : Matrix (Fin 1 Fin d) (Fin 1 Fin d) ) (ν : Fin 1 Fin d) (μ : Fin 1 Fin d) :
            Λ ν μ = minkowskiMatrix ν ν * (minkowskiMetric (LorentzVector.stdBasis ν)) (Λ.mulVec (LorentzVector.stdBasis μ))