HepLean Documentation

Init.Data.Bool

@[reducible, inline]
abbrev Bool.xor :
BoolBoolBool

Boolean exclusive or

Equations
Instances For
    instance Bool.instDecidableForallOfDecidablePred (p : BoolProp) [inst : DecidablePred p] :
    Decidable (∀ (x : Bool), p x)
    Equations
    instance Bool.instDecidableExistsOfDecidablePred (p : BoolProp) [inst : DecidablePred p] :
    Decidable (∃ (x : Bool), p x)
    Equations
    @[simp]
    theorem Bool.default_bool :
    default = false
    instance Bool.instLE :
    Equations
    instance Bool.instLT :
    Equations
    instance Bool.instDecidableLe (x : Bool) (y : Bool) :
    Equations
    instance Bool.instDecidableLt (x : Bool) (y : Bool) :
    Decidable (x < y)
    Equations
    Equations
    Equations
    theorem Bool.eq_iff_iff {a : Bool} {b : Bool} :
    a = b (a = true b = true)
    @[simp]
    theorem Bool.decide_eq_true {b : Bool} [Decidable (b = true)] :
    decide (b = true) = b
    @[simp]
    @[simp]
    theorem Bool.eq_false_imp_eq_true_iff (a : Bool) (b : Bool) :
    (a = falseb = true b = falsea = true) = True
    @[simp]
    theorem Bool.eq_true_imp_eq_false_iff (a : Bool) (b : Bool) :
    (a = trueb = false b = truea = false) = True

    and #

    @[simp]
    theorem Bool.and_self_left (a : Bool) (b : Bool) :
    (a && (a && b)) = (a && b)
    @[simp]
    theorem Bool.and_self_right (a : Bool) (b : Bool) :
    (a && b && b) = (a && b)
    @[simp]
    theorem Bool.not_and_self (x : Bool) :
    (!x && x) = false
    @[simp]
    theorem Bool.and_not_self (x : Bool) :
    (x && !x) = false
    theorem Bool.and_comm (x : Bool) (y : Bool) :
    (x && y) = (y && x)
    instance Bool.instCommutativeAnd :
    Std.Commutative fun (x1 x2 : Bool) => x1 && x2
    Equations
    theorem Bool.and_left_comm (x : Bool) (y : Bool) (z : Bool) :
    (x && (y && z)) = (y && (x && z))
    theorem Bool.and_right_comm (x : Bool) (y : Bool) (z : Bool) :
    (x && y && z) = (x && z && y)
    @[simp]
    theorem Bool.and_iff_left_iff_imp {a : Bool} {b : Bool} :
    (a && b) = a a = trueb = true
    @[simp]
    theorem Bool.and_iff_right_iff_imp {a : Bool} {b : Bool} :
    (a && b) = b b = truea = true
    @[simp]
    theorem Bool.iff_self_and {a : Bool} {b : Bool} :
    a = (a && b) a = trueb = true
    @[simp]
    theorem Bool.iff_and_self {a : Bool} {b : Bool} :
    b = (a && b) b = truea = true
    @[simp]
    theorem Bool.not_and_iff_left_iff_imp {a : Bool} {b : Bool} :
    (!a && b) = a (!a) = true (!b) = true
    @[simp]
    theorem Bool.and_not_iff_right_iff_imp {a : Bool} {b : Bool} :
    (a && !b) = b (!a) = true (!b) = true
    @[simp]
    theorem Bool.iff_not_self_and {a : Bool} {b : Bool} :
    a = (!a && b) (!a) = true (!b) = true
    @[simp]
    theorem Bool.iff_and_not_self {a : Bool} {b : Bool} :
    b = (a && !b) (!a) = true (!b) = true

    or #

    @[simp]
    theorem Bool.or_self_left (a : Bool) (b : Bool) :
    (a || (a || b)) = (a || b)
    @[simp]
    theorem Bool.or_self_right (a : Bool) (b : Bool) :
    (a || b || b) = (a || b)
    @[simp]
    theorem Bool.not_or_self (x : Bool) :
    (!x || x) = true
    @[simp]
    theorem Bool.or_not_self (x : Bool) :
    (x || !x) = true
    @[simp]
    theorem Bool.or_iff_left_iff_imp {a : Bool} {b : Bool} :
    (a || b) = a b = truea = true
    @[simp]
    theorem Bool.or_iff_right_iff_imp {a : Bool} {b : Bool} :
    (a || b) = b a = trueb = true
    @[simp]
    theorem Bool.iff_self_or {a : Bool} {b : Bool} :
    a = (a || b) b = truea = true
    @[simp]
    theorem Bool.iff_or_self {a : Bool} {b : Bool} :
    b = (a || b) a = trueb = true
    @[simp]
    theorem Bool.not_or_iff_left_iff_imp {a : Bool} {b : Bool} :
    (!a || b) = a a = true b = true
    @[simp]
    theorem Bool.or_not_iff_right_iff_imp {a : Bool} {b : Bool} :
    (a || !b) = b a = true b = true
    @[simp]
    theorem Bool.iff_not_self_or {a : Bool} {b : Bool} :
    a = (!a || b) a = true b = true
    @[simp]
    theorem Bool.iff_or_not_self {a : Bool} {b : Bool} :
    b = (a || !b) a = true b = true
    theorem Bool.or_comm (x : Bool) (y : Bool) :
    (x || y) = (y || x)
    instance Bool.instCommutativeOr :
    Std.Commutative fun (x1 x2 : Bool) => x1 || x2
    Equations
    theorem Bool.or_left_comm (x : Bool) (y : Bool) (z : Bool) :
    (x || (y || z)) = (y || (x || z))
    theorem Bool.or_right_comm (x : Bool) (y : Bool) (z : Bool) :
    (x || y || z) = (x || z || y)

    distributivity #

    theorem Bool.and_or_distrib_left (x : Bool) (y : Bool) (z : Bool) :
    (x && (y || z)) = (x && y || x && z)
    theorem Bool.and_or_distrib_right (x : Bool) (y : Bool) (z : Bool) :
    ((x || y) && z) = (x && z || y && z)
    theorem Bool.or_and_distrib_left (x : Bool) (y : Bool) (z : Bool) :
    (x || y && z) = ((x || y) && (x || z))
    theorem Bool.or_and_distrib_right (x : Bool) (y : Bool) (z : Bool) :
    (x && y || z) = ((x || z) && (y || z))
    theorem Bool.and_xor_distrib_left (x : Bool) (y : Bool) (z : Bool) :
    (x && (y ^^ z)) = (x && y ^^ x && z)
    theorem Bool.and_xor_distrib_right (x : Bool) (y : Bool) (z : Bool) :
    ((x ^^ y) && z) = (x && z ^^ y && z)
    @[simp]
    theorem Bool.not_and (x : Bool) (y : Bool) :
    (!(x && y)) = (!x || !y)

    De Morgan's law for boolean and

    @[simp]
    theorem Bool.not_or (x : Bool) (y : Bool) :
    (!(x || y)) = (!x && !y)

    De Morgan's law for boolean or

    theorem Bool.and_eq_true_iff {x : Bool} {y : Bool} :
    (x && y) = true x = true y = true
    theorem Bool.and_eq_false_iff {x : Bool} {y : Bool} :
    (x && y) = false x = false y = false
    @[simp]
    theorem Bool.and_eq_false_imp {x : Bool} {y : Bool} :
    (x && y) = false x = truey = false
    theorem Bool.or_eq_true_iff {x : Bool} {y : Bool} :
    (x || y) = true x = true y = true
    @[simp]
    theorem Bool.or_eq_false_iff {x : Bool} {y : Bool} :
    (x || y) = false x = false y = false

    eq/beq/bne #

    @[simp]

    These two rules follow trivially by simp, but are needed to avoid non-termination in false_eq and true_eq.

    @[simp]
    theorem Bool.false_eq (b : Bool) :
    (false = b) = (b = false)
    @[simp]
    theorem Bool.true_eq (b : Bool) :
    (true = b) = (b = true)
    @[simp]
    theorem Bool.true_beq (b : Bool) :
    (true == b) = b
    @[simp]
    theorem Bool.false_beq (b : Bool) :
    (false == b) = !b
    @[simp]
    theorem Bool.true_bne (b : Bool) :
    (true != b) = !b
    @[simp]
    theorem Bool.false_bne (b : Bool) :
    (false != b) = b
    @[simp]
    theorem Bool.bne_true (b : Bool) :
    (b != true) = !b
    @[simp]
    theorem Bool.bne_false (b : Bool) :
    (b != false) = b
    @[simp]
    theorem Bool.not_beq_self (x : Bool) :
    ((!x) == x) = false
    @[simp]
    theorem Bool.beq_not_self (x : Bool) :
    (x == !x) = false
    @[simp]
    theorem Bool.not_bne (a : Bool) (b : Bool) :
    ((!a) != b) = !a != b
    @[simp]
    theorem Bool.bne_not (a : Bool) (b : Bool) :
    (a != !b) = !a != b
    theorem Bool.not_bne_self (x : Bool) :
    ((!x) != x) = true
    theorem Bool.bne_not_self (x : Bool) :
    (x != !x) = true
    @[simp]
    theorem Bool.not_eq_self (b : Bool) :
    (!b) = b False
    @[simp]
    theorem Bool.eq_not_self (b : Bool) :
    @[simp]
    theorem Bool.beq_self_left (a : Bool) (b : Bool) :
    (a == (a == b)) = b
    @[simp]
    theorem Bool.beq_self_right (a : Bool) (b : Bool) :
    ((a == b) == b) = a
    @[simp]
    theorem Bool.bne_self_left (a : Bool) (b : Bool) :
    (a != (a != b)) = b
    @[simp]
    theorem Bool.bne_self_right (a : Bool) (b : Bool) :
    ((a != b) != b) = a
    theorem Bool.not_bne_not (x : Bool) (y : Bool) :
    ((!x) != !y) = (x != y)
    @[simp]
    theorem Bool.bne_assoc (x : Bool) (y : Bool) (z : Bool) :
    ((x != y) != z) = (x != (y != z))
    instance Bool.instAssociativeBne :
    Std.Associative fun (x1 x2 : Bool) => x1 != x2
    Equations
    @[simp]
    theorem Bool.bne_left_inj {x : Bool} {y : Bool} {z : Bool} :
    (x != y) = (x != z) y = z
    @[simp]
    theorem Bool.bne_right_inj {x : Bool} {y : Bool} {z : Bool} :
    (x != z) = (y != z) x = y
    theorem Bool.eq_not_of_ne {x : Bool} {y : Bool} :
    x yx = !y
    theorem Bool.beq_eq_decide_eq {α : Type u_1} [BEq α] [LawfulBEq α] [DecidableEq α] (a : α) (b : α) :
    (a == b) = decide (a = b)
    theorem Bool.eq_not {a : Bool} {b : Bool} :
    a = !b a b
    theorem Bool.not_eq {a : Bool} {b : Bool} :
    (!a) = b a b
    @[simp]
    theorem Bool.coe_iff_coe {a : Bool} {b : Bool} :
    (a = true b = true) a = b
    @[simp]
    theorem Bool.coe_true_iff_false {a : Bool} {b : Bool} :
    (a = true b = false) a = !b
    @[simp]
    theorem Bool.coe_false_iff_true {a : Bool} {b : Bool} :
    (a = false b = true) (!a) = b
    @[simp]
    theorem Bool.coe_false_iff_false {a : Bool} {b : Bool} :
    (a = false b = false) (!a) = !b

    beq properties #

    theorem Bool.beq_comm {α : Type u_1} [BEq α] [LawfulBEq α] {a : α} {b : α} :
    (a == b) = (b == a)

    xor #

    theorem Bool.false_xor (x : Bool) :
    (false ^^ x) = x
    theorem Bool.xor_false (x : Bool) :
    (x ^^ false) = x
    theorem Bool.true_xor (x : Bool) :
    (true ^^ x) = !x
    theorem Bool.xor_true (x : Bool) :
    (x ^^ true) = !x
    theorem Bool.not_xor_self (x : Bool) :
    (!x ^^ x) = true
    theorem Bool.xor_not_self (x : Bool) :
    (x ^^ !x) = true
    theorem Bool.not_xor (x : Bool) (y : Bool) :
    (!x ^^ y) = !(x ^^ y)
    theorem Bool.xor_not (x : Bool) (y : Bool) :
    (x ^^ !y) = !(x ^^ y)
    theorem Bool.not_xor_not (x : Bool) (y : Bool) :
    (!x ^^ !y) = (x ^^ y)
    theorem Bool.xor_self (x : Bool) :
    (x ^^ x) = false
    theorem Bool.xor_comm (x : Bool) (y : Bool) :
    (x ^^ y) = (y ^^ x)
    theorem Bool.xor_left_comm (x : Bool) (y : Bool) (z : Bool) :
    (x ^^ (y ^^ z)) = (y ^^ (x ^^ z))
    theorem Bool.xor_right_comm (x : Bool) (y : Bool) (z : Bool) :
    (x ^^ y ^^ z) = (x ^^ z ^^ y)
    theorem Bool.xor_assoc (x : Bool) (y : Bool) (z : Bool) :
    (x ^^ y ^^ z) = (x ^^ (y ^^ z))
    theorem Bool.xor_left_inj {x : Bool} {y : Bool} {z : Bool} :
    (x ^^ y) = (x ^^ z) y = z
    theorem Bool.xor_right_inj {x : Bool} {y : Bool} {z : Bool} :
    (x ^^ z) = (y ^^ z) x = y

    le/lt #

    @[simp]
    theorem Bool.le_true (x : Bool) :
    @[simp]
    theorem Bool.false_le (x : Bool) :
    @[simp]
    theorem Bool.le_refl (x : Bool) :
    x x
    @[simp]
    theorem Bool.lt_irrefl (x : Bool) :
    ¬x < x
    theorem Bool.le_trans {x : Bool} {y : Bool} {z : Bool} :
    x yy zx z
    theorem Bool.le_antisymm {x : Bool} {y : Bool} :
    x yy xx = y
    theorem Bool.le_total (x : Bool) (y : Bool) :
    x y y x
    theorem Bool.lt_asymm {x : Bool} {y : Bool} :
    x < y¬y < x
    theorem Bool.lt_trans {x : Bool} {y : Bool} {z : Bool} :
    x < yy < zx < z
    theorem Bool.lt_iff_le_not_le {x : Bool} {y : Bool} :
    x < y x y ¬y x
    theorem Bool.lt_of_le_of_lt {x : Bool} {y : Bool} {z : Bool} :
    x yy < zx < z
    theorem Bool.lt_of_lt_of_le {x : Bool} {y : Bool} {z : Bool} :
    x < yy zx < z
    theorem Bool.le_of_lt {x : Bool} {y : Bool} :
    x < yx y
    theorem Bool.le_of_eq {x : Bool} {y : Bool} :
    x = yx y
    theorem Bool.ne_of_lt {x : Bool} {y : Bool} :
    x < yx y
    theorem Bool.lt_of_le_of_ne {x : Bool} {y : Bool} :
    x yx yx < y
    theorem Bool.le_of_lt_or_eq {x : Bool} {y : Bool} :
    x < y x = yx y

    min/max #

    @[simp]
    theorem Bool.max_eq_or :
    max = or
    @[simp]
    theorem Bool.min_eq_and :
    min = and

    injectivity lemmas #

    theorem Bool.not_inj {x : Bool} {y : Bool} :
    (!x) = !yx = y
    theorem Bool.not_inj_iff {x : Bool} {y : Bool} :
    (!x) = !y x = y
    theorem Bool.and_or_inj_right {m : Bool} {x : Bool} {y : Bool} :
    (x && m) = (y && m)(x || m) = (y || m)x = y
    theorem Bool.and_or_inj_right_iff {m : Bool} {x : Bool} {y : Bool} :
    (x && m) = (y && m) (x || m) = (y || m) x = y
    theorem Bool.and_or_inj_left {m : Bool} {x : Bool} {y : Bool} :
    (m && x) = (m && y)(m || x) = (m || y)x = y
    theorem Bool.and_or_inj_left_iff {m : Bool} {x : Bool} {y : Bool} :
    (m && x) = (m && y) (m || x) = (m || y) x = y

    toNat #

    def Bool.toNat (b : Bool) :

    convert a Bool to a Nat, false -> 0, true -> 1

    Equations
    • b.toNat = bif b then 1 else 0
    Instances For
      @[simp]
      theorem Bool.toNat_false :
      false.toNat = 0
      @[simp]
      theorem Bool.toNat_true :
      true.toNat = 1
      theorem Bool.toNat_le (c : Bool) :
      c.toNat 1
      theorem Bool.toNat_lt (b : Bool) :
      b.toNat < 2
      @[simp]
      theorem Bool.toNat_eq_zero {b : Bool} :
      b.toNat = 0 b = false
      @[simp]
      theorem Bool.toNat_eq_one {b : Bool} :
      b.toNat = 1 b = true

      ite #

      @[simp]
      theorem Bool.if_true_left (p : Prop) [h : Decidable p] (f : Bool) :
      (if p then true else f) = (decide p || f)
      @[simp]
      theorem Bool.if_false_left (p : Prop) [h : Decidable p] (f : Bool) :
      (if p then false else f) = (!decide p && f)
      @[simp]
      theorem Bool.if_true_right (p : Prop) [h : Decidable p] (t : Bool) :
      (if p then t else true) = (!decide p || t)
      @[simp]
      theorem Bool.if_false_right (p : Prop) [h : Decidable p] (t : Bool) :
      (if p then t else false) = (decide p && t)
      @[simp]
      theorem Bool.ite_eq_true_distrib (p : Prop) [h : Decidable p] (t : Bool) (f : Bool) :
      ((if p then t else f) = true) = if p then t = true else f = true
      @[simp]
      theorem Bool.ite_eq_false_distrib (p : Prop) [h : Decidable p] (t : Bool) (f : Bool) :
      ((if p then t else f) = false) = if p then t = false else f = false
      @[simp]
      theorem Bool.ite_eq_false {b : Bool} {p : Prop} {q : Prop} :
      (if b = false then p else q) if b = true then q else p
      @[simp]
      theorem Bool.ite_eq_true_else_eq_false {b : Bool} {q : Prop} :
      (if b = true then q else b = false) b = trueq
      @[simp]
      theorem Bool.not_ite_eq_true_eq_true {p : Prop} [h : Decidable p] {b : Bool} {c : Bool} :
      (¬if p then b = true else c = true) if p then b = false else c = false
      @[simp]
      theorem Bool.not_ite_eq_false_eq_false {p : Prop} [h : Decidable p] {b : Bool} {c : Bool} :
      (¬if p then b = false else c = false) if p then b = true else c = true
      @[simp]
      theorem Bool.not_ite_eq_true_eq_false {p : Prop} [h : Decidable p] {b : Bool} {c : Bool} :
      (¬if p then b = true else c = false) if p then b = false else c = true
      @[simp]
      theorem Bool.not_ite_eq_false_eq_true {p : Prop} [h : Decidable p] {b : Bool} {c : Bool} :
      (¬if p then b = false else c = true) if p then b = true else c = false

      forall #

      theorem Bool.forall_bool' {p : BoolProp} (b : Bool) :
      (∀ (x : Bool), p x) p b p !b
      @[simp]
      theorem Bool.forall_bool {p : BoolProp} :
      (∀ (b : Bool), p b) p false p true

      exists #

      theorem Bool.exists_bool' {p : BoolProp} (b : Bool) :
      (∃ (x : Bool), p x) p b p !b
      @[simp]
      theorem Bool.exists_bool {p : BoolProp} :
      (∃ (b : Bool), p b) p false p true

      cond #

      theorem Bool.cond_eq_ite {α : Type u_1} (b : Bool) (t : α) (e : α) :
      (bif b then t else e) = if b = true then t else e
      theorem Bool.cond_eq_if {b : Bool} :
      ∀ {α : Type u_1} {x y : α}, (bif b then x else y) = if b = true then x else y
      @[simp]
      theorem Bool.cond_not {α : Type u_1} (b : Bool) (t : α) (e : α) :
      (bif !b then t else e) = bif b then e else t
      @[simp]
      theorem Bool.cond_self {α : Type u_1} (c : Bool) (t : α) :
      (bif c then t else t) = t
      @[simp]
      theorem Bool.cond_prop {b : Bool} {p : Prop} {q : Prop} :
      (bif b then p else q) if b = true then p else q

      If the return values are propositions, there is no harm in simplifying a bif to an if.

      theorem Bool.cond_decide {α : Type u_1} (p : Prop) [Decidable p] (t : α) (e : α) :
      (bif decide p then t else e) = if p then t else e
      @[simp]
      theorem Bool.cond_eq_ite_iff {α : Type u_1} {a : Bool} {p : Prop} [h : Decidable p] {x : α} {y : α} {u : α} {v : α} :
      ((bif a then x else y) = if p then u else v) (if a = true then x else y) = if p then u else v
      @[simp]
      theorem Bool.ite_eq_cond_iff {α : Type u_1} {p : Prop} {a : Bool} [h : Decidable p] {x : α} {y : α} {u : α} {v : α} :
      ((if p then x else y) = bif a then u else v) (if p then x else y) = if a = true then u else v
      @[simp]
      theorem Bool.cond_eq_true_distrib (c : Bool) (t : Bool) (f : Bool) :
      ((bif c then t else f) = true) = if c = true then t = true else f = true
      @[simp]
      theorem Bool.cond_eq_false_distrib (c : Bool) (t : Bool) (f : Bool) :
      ((bif c then t else f) = false) = if c = true then t = false else f = false
      theorem Bool.cond_true {α : Type u} {a : α} {b : α} :
      (bif true then a else b) = a
      theorem Bool.cond_false {α : Type u} {a : α} {b : α} :
      (bif false then a else b) = b
      @[simp]
      theorem Bool.cond_true_left (c : Bool) (f : Bool) :
      (bif c then true else f) = (c || f)
      @[simp]
      theorem Bool.cond_false_left (c : Bool) (f : Bool) :
      (bif c then false else f) = (!c && f)
      @[simp]
      theorem Bool.cond_true_right (c : Bool) (t : Bool) :
      (bif c then t else true) = (!c || t)
      @[simp]
      theorem Bool.cond_false_right (c : Bool) (t : Bool) :
      (bif c then t else false) = (c && t)
      @[simp]
      theorem Bool.cond_true_not_same (c : Bool) (b : Bool) :
      (bif c then !c else b) = (!c && b)
      @[simp]
      theorem Bool.cond_false_not_same (c : Bool) (b : Bool) :
      (bif c then b else !c) = (!c || b)
      @[simp]
      theorem Bool.cond_true_same (c : Bool) (b : Bool) :
      (bif c then c else b) = (c || b)
      @[simp]
      theorem Bool.cond_false_same (c : Bool) (b : Bool) :
      (bif c then b else c) = (c && b)
      theorem Bool.cond_pos {α : Type u_1} {b : Bool} {a : α} {a' : α} (h : b = true) :
      (bif b then a else a') = a
      theorem Bool.cond_neg {α : Type u_1} {b : Bool} {a : α} {a' : α} (h : b = false) :
      (bif b then a else a') = a'
      theorem Bool.apply_cond {α : Type u_1} {β : Type u_2} (f : αβ) {b : Bool} {a : α} {a' : α} :
      f (bif b then a else a') = bif b then f a else f a'

      decidability #

      theorem Bool.decide_coe (b : Bool) [Decidable (b = true)] :
      decide (b = true) = b
      @[simp]
      theorem Bool.decide_and (p : Prop) (q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
      decide (p q) = (decide p && decide q)
      @[simp]
      theorem Bool.decide_or (p : Prop) (q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
      decide (p q) = (decide p || decide q)
      @[simp]
      theorem Bool.decide_iff_dist (p : Prop) (q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
      decide (p q) = (decide p == decide q)
      theorem Bool.and_eq_decide (p : Prop) (q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
      (decide p && decide q) = decide (p q)
      theorem Bool.or_eq_decide (p : Prop) (q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
      (decide p || decide q) = decide (p q)
      theorem Bool.decide_beq_decide (p : Prop) (q : Prop) [dpq : Decidable (p q)] [dp : Decidable p] [dq : Decidable q] :
      (decide p == decide q) = decide (p q)

      decide #

      @[simp]
      theorem false_eq_decide_iff {p : Prop} [h : Decidable p] :
      @[simp]
      theorem true_eq_decide_iff {p : Prop} [h : Decidable p] :

      coercions #

      def boolPredToPred {α : Sort u_1} :
      Coe (αBool) (αProp)

      This should not be turned on globally as an instance because it degrades performance in Mathlib, but may be used locally.

      Equations
      • boolPredToPred = { coe := fun (r : αBool) (a : α) => r a = true }
      Instances For
        def boolRelToRel {α : Sort u_1} :
        Coe (ααBool) (ααProp)

        This should not be turned on globally as an instance because it degrades performance in Mathlib, but may be used locally.

        Equations
        • boolRelToRel = { coe := fun (r : ααBool) (a b : α) => r a b = true }
        Instances For