HepLean Documentation

Init.Data.Option.Attach

@[implemented_by _private.Init.Data.Option.Attach.0.Option.attachWithImpl]
def Option.attachWith {α : Type u_1} (xs : Option α) (P : αProp) (H : ∀ (x : α), x xsP x) :
Option { x : α // P x }

"Attach" a proof P x that holds for the element of o, if present, to produce a new option with the same element but in the type {x // P x}.

Equations
  • none.attachWith P H_2 = none
  • (some x).attachWith P H_2 = some x,
Instances For
    @[inline]
    def Option.attach {α : Type u_1} (xs : Option α) :
    Option { x : α // x xs }

    "Attach" the proof that the element of xs, if present, is in xs to produce a new option with the same elements but in the type {x // x ∈ xs}.

    Equations
    Instances For
      @[simp]
      theorem Option.attach_none {α : Type u_1} :
      none.attach = none
      @[simp]
      theorem Option.attachWith_none {α : Type u_1} {P : αProp} {H : ∀ (x : α), x noneP x} :
      none.attachWith P H = none
      @[simp]
      theorem Option.attach_some {α : Type u_1} {x : α} :
      (some x).attach = some x,
      @[simp]
      theorem Option.attachWith_some {α : Type u_1} {x : α} {P : αProp} (h : ∀ (b : α), b some xP b) :
      (some x).attachWith P h = some x,
      theorem Option.attach_congr {α : Type u_1} {o₁ : Option α} {o₂ : Option α} (h : o₁ = o₂) :
      o₁.attach = Option.map (fun (x : { x : α // x o₂ }) => x.val, ) o₂.attach
      theorem Option.attachWith_congr {α : Type u_1} {o₁ : Option α} {o₂ : Option α} (w : o₁ = o₂) {P : αProp} {H : ∀ (x : α), x o₁P x} :
      o₁.attachWith P H = o₂.attachWith P
      theorem Option.attach_map_coe {α : Type u_1} {β : Type u_2} (o : Option α) (f : αβ) :
      Option.map (fun (i : { i : α // i o }) => f i.val) o.attach = Option.map f o
      theorem Option.attach_map_val {α : Type u_1} {β : Type u_2} (o : Option α) (f : αβ) :
      Option.map (fun (i : { x : α // x o }) => f i.val) o.attach = Option.map f o
      @[simp]
      theorem Option.attach_map_subtype_val {α : Type u_1} (o : Option α) :
      Option.map Subtype.val o.attach = o
      theorem Option.attachWith_map_coe {α : Type u_1} {β : Type u_2} {p : αProp} (f : αβ) (o : Option α) (H : ∀ (a : α), a op a) :
      Option.map (fun (i : { i : α // p i }) => f i.val) (o.attachWith p H) = Option.map f o
      theorem Option.attachWith_map_val {α : Type u_1} {β : Type u_2} {p : αProp} (f : αβ) (o : Option α) (H : ∀ (a : α), a op a) :
      Option.map (fun (i : { x : α // p x }) => f i.val) (o.attachWith p H) = Option.map f o
      @[simp]
      theorem Option.attachWith_map_subtype_val {α : Type u_1} {p : αProp} (o : Option α) (H : ∀ (a : α), a op a) :
      Option.map Subtype.val (o.attachWith p H) = o
      @[simp]
      theorem Option.mem_attach {α : Type u_1} (o : Option α) (x : { x : α // x o }) :
      x o.attach
      @[simp]
      theorem Option.isNone_attach {α : Type u_1} (o : Option α) :
      o.attach.isNone = o.isNone
      @[simp]
      theorem Option.isNone_attachWith {α : Type u_1} {p : αProp} (o : Option α) (H : ∀ (a : α), a op a) :
      (o.attachWith p H).isNone = o.isNone
      @[simp]
      theorem Option.isSome_attach {α : Type u_1} (o : Option α) :
      o.attach.isSome = o.isSome
      @[simp]
      theorem Option.isSome_attachWith {α : Type u_1} {p : αProp} (o : Option α) (H : ∀ (a : α), a op a) :
      (o.attachWith p H).isSome = o.isSome
      @[simp]
      theorem Option.attach_eq_none_iff {α : Type u_1} (o : Option α) :
      o.attach = none o = none
      @[simp]
      theorem Option.attach_eq_some_iff {α : Type u_1} {o : Option α} {x : { x : α // x o }} :
      o.attach = some x o = some x.val
      @[simp]
      theorem Option.attachWith_eq_none_iff {α : Type u_1} {p : αProp} (o : Option α) (H : ∀ (a : α), a op a) :
      o.attachWith p H = none o = none
      @[simp]
      theorem Option.attachWith_eq_some_iff {α : Type u_1} {p : αProp} {o : Option α} (H : ∀ (a : α), a op a) {x : { x : α // p x }} :
      o.attachWith p H = some x o = some x.val
      @[simp]
      theorem Option.get_attach {α : Type u_1} {o : Option α} (h : o.attach.isSome = true) :
      o.attach.get h = o.get ,
      @[simp]
      theorem Option.get_attachWith {α : Type u_1} {p : αProp} {o : Option α} (H : ∀ (a : α), a op a) (h : (o.attachWith p H).isSome = true) :
      (o.attachWith p H).get h = o.get ,
      @[simp]
      theorem Option.toList_attach {α : Type u_1} (o : Option α) :
      o.attach.toList = List.map (fun (x : { x : α // x o.toList }) => match x with | x, h => x, ) o.toList.attach
      theorem Option.attach_map {α : Type u_1} {β : Type u_2} {o : Option α} (f : αβ) :
      (Option.map f o).attach = Option.map (fun (x : { x : α // x o }) => match x with | x, h => f x, ) o.attach
      theorem Option.attachWith_map {α : Type u_1} {β : Type u_2} {o : Option α} (f : αβ) {P : βProp} {H : ∀ (b : β), b Option.map f oP b} :
      (Option.map f o).attachWith P H = Option.map (fun (x : { x : α // (P f) x }) => match x with | x, h => f x, h) (o.attachWith (P f) )
      theorem Option.map_attach {α : Type u_1} {β : Type u_2} {o : Option α} (f : { x : α // x o }β) :
      Option.map f o.attach = Option.pmap (fun (a : α) (h : a o) => f a, h) o
      theorem Option.map_attachWith {α : Type u_1} {β : Type u_2} {o : Option α} {P : αProp} {H : ∀ (a : α), a oP a} (f : { x : α // P x }β) :
      Option.map f (o.attachWith P H) = Option.pmap (fun (a : α) (h : a o P a) => f a, ) o
      theorem Option.attach_bind {α : Type u_1} {β : Type u_2} {o : Option α} {f : αOption β} :
      (o.bind f).attach = o.attach.bind fun (x : { x : α // x o }) => match x with | x, h => Option.map (fun (x_1 : { x_1 : β // x_1 f x }) => match x_1 with | y, h' => y, ) (f x).attach
      theorem Option.bind_attach {α : Type u_1} {β : Type u_2} {o : Option α} {f : { x : α // x o }Option β} :
      o.attach.bind f = o.pbind fun (a : α) (h : a o) => f a, h
      theorem Option.pbind_eq_bind_attach {α : Type u_1} {β : Type u_2} {o : Option α} {f : (a : α) → a oOption β} :
      o.pbind f = o.attach.bind fun (x : { x : α // x o }) => match x with | x, h => f x h
      theorem Option.attach_filter {α : Type u_1} {o : Option α} {p : αBool} :
      (Option.filter p o).attach = o.attach.bind fun (x : { x : α // x o }) => match x with | x, h => if h' : p x = true then some x, else none
      theorem Option.filter_attach {α : Type u_1} {o : Option α} {p : { x : α // x o }Bool} :
      Option.filter p o.attach = o.pbind fun (a : α) (h : a o) => if p a, h = true then some a, h else none

      unattach #

      Option.unattach is the (one-sided) inverse of Option.attach. It is a synonym for Option.map Subtype.val.

      We use it by providing a simp lemma l.attach.unattach = l, and simp lemmas which recognize higher order functions applied to l : Option { x // p x } which only depend on the value, not the predicate, and rewrite these in terms of a simpler function applied to l.unattach.

      Further, we provide simp lemmas that push unattach inwards.

      def Option.unattach {α : Type u_1} {p : αProp} (o : Option { x : α // p x }) :

      A synonym for l.map (·.val). Mostly this should not be needed by users. It is introduced as an intermediate step by lemmas such as map_subtype, and is ideally subsequently simplified away by unattach_attach.

      If not, usually the right approach is simp [Option.unattach, -Option.map_subtype] to unfold.

      Equations
      • o.unattach = Option.map (fun (x : { x : α // p x }) => x.val) o
      Instances For
        @[simp]
        theorem Option.unattach_none {α : Type u_1} {p : αProp} :
        none.unattach = none
        @[simp]
        theorem Option.unattach_some {α : Type u_1} {p : αProp} {a : { x : α // p x }} :
        (some a).unattach = some a.val
        @[simp]
        theorem Option.isSome_unattach {α : Type u_1} {p : αProp} {o : Option { x : α // p x }} :
        o.unattach.isSome = o.isSome
        @[simp]
        theorem Option.isNone_unattach {α : Type u_1} {p : αProp} {o : Option { x : α // p x }} :
        o.unattach.isNone = o.isNone
        @[simp]
        theorem Option.unattach_attach {α : Type u_1} (o : Option α) :
        o.attach.unattach = o
        @[simp]
        theorem Option.unattach_attachWith {α : Type u_1} {p : αProp} {o : Option α} {H : ∀ (a : α), a op a} :
        (o.attachWith p H).unattach = o

        Recognizing higher order functions on subtypes using a function that only depends on the value. #

        @[simp]
        theorem Option.map_subtype {α : Type u_1} {β : Type u_2} {p : αProp} {o : Option { x : α // p x }} {f : { x : α // p x }β} {g : αβ} {hf : ∀ (x : α) (h : p x), f x, h = g x} :
        Option.map f o = Option.map g o.unattach

        This lemma identifies maps over lists of subtypes, where the function only depends on the value, not the proposition, and simplifies these to the function directly taking the value.

        @[simp]
        theorem Option.bind_subtype {α : Type u_1} {β : Type u_2} {p : αProp} {o : Option { x : α // p x }} {f : { x : α // p x }Option β} {g : αOption β} {hf : ∀ (x : α) (h : p x), f x, h = g x} :
        o.bind f = o.unattach.bind g
        @[simp]
        theorem Option.unattach_filter {α : Type u_1} {p : αProp} {o : Option { x : α // p x }} {f : { x : α // p x }Bool} {g : αBool} {hf : ∀ (x : α) (h : p x), f x, h = g x} :
        (Option.filter f o).unattach = Option.filter g o.unattach