HepLean Documentation

Init.Data.Prod

instance instLawfulBEqProd {α : Type u_1} {β : Type u_2} [BEq α] [BEq β] [LawfulBEq α] [LawfulBEq β] :
LawfulBEq (α × β)
Equations
  • =
@[simp]
theorem Prod.forall {α : Type u_1} {β : Type u_2} {p : α × βProp} :
(∀ (x : α × β), p x) ∀ (a : α) (b : β), p (a, b)
@[simp]
theorem Prod.exists {α : Type u_1} {β : Type u_2} {p : α × βProp} :
(∃ (x : α × β), p x) ∃ (a : α), ∃ (b : β), p (a, b)