HepLean Documentation
Init
.
Data
.
Prod
Search
Google site search
return to top
source
Imports
Init.NotationExtra
Init.SimpLemmas
Imported by
instLawfulBEqProd
Prod
.
forall
Prod
.
exists
source
instance
instLawfulBEqProd
{α :
Type
u_1}
{β :
Type
u_2}
[
BEq
α
]
[
BEq
β
]
[
LawfulBEq
α
]
[
LawfulBEq
β
]
:
LawfulBEq
(
α
×
β
)
Equations
⋯
=
⋯
source
@[simp]
theorem
Prod
.
forall
{α :
Type
u_1}
{β :
Type
u_2}
{p :
α
×
β
→
Prop
}
:
(∀ (
x
:
α
×
β
),
p
x
)
↔
∀ (
a
:
α
) (
b
:
β
),
p
(
a
,
b
)
source
@[simp]
theorem
Prod
.
exists
{α :
Type
u_1}
{β :
Type
u_2}
{p :
α
×
β
→
Prop
}
:
(∃ (
x
:
α
×
β
),
p
x
)
↔
∃ (
a
:
α
),
∃ (
b
:
β
),
p
(
a
,
b
)