Homomorphisms of ℚ
-algebras #
def
RingHom.toRatAlgHom
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
[Algebra ℚ R]
[Algebra ℚ S]
(f : R →+* S)
:
Reinterpret a RingHom
as a ℚ
-algebra homomorphism. This actually yields an equivalence,
see RingHom.equivRatAlgHom
.
Equations
- f.toRatAlgHom = { toRingHom := f, commutes' := ⋯ }
Instances For
def
RingHom.equivRatAlgHom
{R : Type u_1}
{S : Type u_2}
[Ring R]
[Ring S]
[Algebra ℚ R]
[Algebra ℚ S]
:
The equivalence between RingHom
and ℚ
-algebra homomorphisms.
Equations
- RingHom.equivRatAlgHom = { toFun := RingHom.toRatAlgHom, invFun := AlgHom.toRingHom, left_inv := ⋯, right_inv := ⋯ }