HepLean Documentation

Mathlib.Algebra.Group.Action.Defs

Definitions of group actions #

This file defines a hierarchy of group action type-classes on top of the previously defined notation classes SMul and its additive version VAdd:

The hierarchy is extended further by Module, defined elsewhere.

Also provided are typeclasses regarding the interaction of different group actions,

Notation #

Implementation details #

This file should avoid depending on other parts of GroupTheory, to avoid import cycles. More sophisticated lemmas belong in GroupTheory.GroupAction.

Tags #

group action

@[instance 910]
instance Add.toVAdd (α : Type u_9) [Add α] :
VAdd α α

See also AddMonoid.toAddAction

Equations
@[instance 910]
instance Mul.toSMul (α : Type u_9) [Mul α] :
SMul α α

See also Monoid.toMulAction and MulZeroClass.toSMulWithZero.

Equations
@[simp]
theorem vadd_eq_add (α : Type u_9) [Add α] {a : α} {a' : α} :
a +ᵥ a' = a + a'
@[simp]
theorem smul_eq_mul (α : Type u_9) [Mul α] {a : α} {a' : α} :
a a' = a * a'
class AddAction (G : Type u_9) (P : Type u_10) [AddMonoid G] extends VAdd :
Type (max u_10 u_9)

Type class for additive monoid actions.

  • vadd : GPP
  • zero_vadd : ∀ (p : P), 0 +ᵥ p = p

    Zero is a neutral element for +ᵥ

  • add_vadd : ∀ (g₁ g₂ : G) (p : P), g₁ + g₂ +ᵥ p = g₁ +ᵥ (g₂ +ᵥ p)

    Associativity of + and +ᵥ

Instances
    theorem AddAction.zero_vadd {G : Type u_9} {P : Type u_10} :
    ∀ {inst : AddMonoid G} [self : AddAction G P] (p : P), 0 +ᵥ p = p

    Zero is a neutral element for +ᵥ

    theorem AddAction.add_vadd {G : Type u_9} {P : Type u_10} :
    ∀ {inst : AddMonoid G} [self : AddAction G P] (g₁ g₂ : G) (p : P), g₁ + g₂ +ᵥ p = g₁ +ᵥ (g₂ +ᵥ p)

    Associativity of + and +ᵥ

    theorem AddAction.ext_iff {G : Type u_9} {P : Type u_10} :
    ∀ {inst : AddMonoid G} {x y : AddAction G P}, x = y VAdd.vadd = VAdd.vadd
    theorem AddAction.ext {G : Type u_9} {P : Type u_10} :
    ∀ {inst : AddMonoid G} {x y : AddAction G P}, VAdd.vadd = VAdd.vaddx = y
    theorem MulAction.ext_iff {α : Type u_9} {β : Type u_10} :
    ∀ {inst : Monoid α} {x y : MulAction α β}, x = y SMul.smul = SMul.smul
    theorem MulAction.ext {α : Type u_9} {β : Type u_10} :
    ∀ {inst : Monoid α} {x y : MulAction α β}, SMul.smul = SMul.smulx = y
    class MulAction (α : Type u_9) (β : Type u_10) [Monoid α] extends SMul :
    Type (max u_10 u_9)

    Typeclass for multiplicative actions by monoids. This generalizes group actions.

    • smul : αββ
    • one_smul : ∀ (b : β), 1 b = b

      One is the neutral element for

    • mul_smul : ∀ (x y : α) (b : β), (x * y) b = x y b

      Associativity of and *

    Instances
      theorem MulAction.one_smul {α : Type u_9} {β : Type u_10} :
      ∀ {inst : Monoid α} [self : MulAction α β] (b : β), 1 b = b

      One is the neutral element for

      theorem MulAction.mul_smul {α : Type u_9} {β : Type u_10} :
      ∀ {inst : Monoid α} [self : MulAction α β] (x y : α) (b : β), (x * y) b = x y b

      Associativity of and *

      Scalar tower and commuting actions #

      class VAddCommClass (M : Type u_9) (N : Type u_10) (α : Type u_11) [VAdd M α] [VAdd N α] :

      A typeclass mixin saying that two additive actions on the same space commute.

      • vadd_comm : ∀ (m : M) (n : N) (a : α), m +ᵥ (n +ᵥ a) = n +ᵥ (m +ᵥ a)

        +ᵥ is left commutative

      Instances
        theorem VAddCommClass.vadd_comm {M : Type u_9} {N : Type u_10} {α : Type u_11} :
        ∀ {inst : VAdd M α} {inst_1 : VAdd N α} [self : VAddCommClass M N α] (m : M) (n : N) (a : α), m +ᵥ (n +ᵥ a) = n +ᵥ (m +ᵥ a)

        +ᵥ is left commutative

        class SMulCommClass (M : Type u_9) (N : Type u_10) (α : Type u_11) [SMul M α] [SMul N α] :

        A typeclass mixin saying that two multiplicative actions on the same space commute.

        • smul_comm : ∀ (m : M) (n : N) (a : α), m n a = n m a

          is left commutative

        Instances
          theorem SMulCommClass.smul_comm {M : Type u_9} {N : Type u_10} {α : Type u_11} :
          ∀ {inst : SMul M α} {inst_1 : SMul N α} [self : SMulCommClass M N α] (m : M) (n : N) (a : α), m n a = n m a

          is left commutative

          theorem VAddCommClass.symm (M : Type u_9) (N : Type u_10) (α : Type u_11) [VAdd M α] [VAdd N α] [VAddCommClass M N α] :

          Commutativity of additive actions is a symmetric relation. This lemma can't be an instance because this would cause a loop in the instance search graph.

          theorem SMulCommClass.symm (M : Type u_9) (N : Type u_10) (α : Type u_11) [SMul M α] [SMul N α] [SMulCommClass M N α] :

          Commutativity of actions is a symmetric relation. This lemma can't be an instance because this would cause a loop in the instance search graph.

          theorem Function.Injective.vaddCommClass {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd N α] [VAdd M β] [VAdd N β] [VAddCommClass M N β] {f : αβ} (hf : Function.Injective f) (h₁ : ∀ (c : M) (x : α), f (c +ᵥ x) = c +ᵥ f x) (h₂ : ∀ (c : N) (x : α), f (c +ᵥ x) = c +ᵥ f x) :
          theorem Function.Injective.smulCommClass {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul N α] [SMul M β] [SMul N β] [SMulCommClass M N β] {f : αβ} (hf : Function.Injective f) (h₁ : ∀ (c : M) (x : α), f (c x) = c f x) (h₂ : ∀ (c : N) (x : α), f (c x) = c f x) :
          theorem Function.Surjective.vaddCommClass {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd N α] [VAdd M β] [VAdd N β] [VAddCommClass M N α] {f : αβ} (hf : Function.Surjective f) (h₁ : ∀ (c : M) (x : α), f (c +ᵥ x) = c +ᵥ f x) (h₂ : ∀ (c : N) (x : α), f (c +ᵥ x) = c +ᵥ f x) :
          theorem Function.Surjective.smulCommClass {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul N α] [SMul M β] [SMul N β] [SMulCommClass M N α] {f : αβ} (hf : Function.Surjective f) (h₁ : ∀ (c : M) (x : α), f (c x) = c f x) (h₂ : ∀ (c : N) (x : α), f (c x) = c f x) :
          instance vaddCommClass_self (M : Type u_9) (α : Type u_10) [AddCommMonoid M] [AddAction M α] :
          Equations
          • =
          instance smulCommClass_self (M : Type u_9) (α : Type u_10) [CommMonoid M] [MulAction M α] :
          Equations
          • =
          class VAddAssocClass (M : Type u_9) (N : Type u_10) (α : Type u_11) [VAdd M N] [VAdd N α] [VAdd M α] :

          An instance of VAddAssocClass M N α states that the additive action of M on α is determined by the additive actions of M on N and N on α.

          • vadd_assoc : ∀ (x : M) (y : N) (z : α), x +ᵥ y +ᵥ z = x +ᵥ (y +ᵥ z)

            Associativity of +ᵥ

          Instances
            theorem VAddAssocClass.vadd_assoc {M : Type u_9} {N : Type u_10} {α : Type u_11} :
            ∀ {inst : VAdd M N} {inst_1 : VAdd N α} {inst_2 : VAdd M α} [self : VAddAssocClass M N α] (x : M) (y : N) (z : α), x +ᵥ y +ᵥ z = x +ᵥ (y +ᵥ z)

            Associativity of +ᵥ

            class IsScalarTower (M : Type u_9) (N : Type u_10) (α : Type u_11) [SMul M N] [SMul N α] [SMul M α] :

            An instance of IsScalarTower M N α states that the multiplicative action of M on α is determined by the multiplicative actions of M on N and N on α.

            • smul_assoc : ∀ (x : M) (y : N) (z : α), (x y) z = x y z

              Associativity of

            Instances
              theorem IsScalarTower.smul_assoc {M : Type u_9} {N : Type u_10} {α : Type u_11} :
              ∀ {inst : SMul M N} {inst_1 : SMul N α} {inst_2 : SMul M α} [self : IsScalarTower M N α] (x : M) (y : N) (z : α), (x y) z = x y z

              Associativity of

              @[simp]
              theorem vadd_assoc {α : Type u_5} {M : Type u_9} {N : Type u_10} [VAdd M N] [VAdd N α] [VAdd M α] [VAddAssocClass M N α] (x : M) (y : N) (z : α) :
              x +ᵥ y +ᵥ z = x +ᵥ (y +ᵥ z)
              @[simp]
              theorem smul_assoc {α : Type u_5} {M : Type u_9} {N : Type u_10} [SMul M N] [SMul N α] [SMul M α] [IsScalarTower M N α] (x : M) (y : N) (z : α) :
              (x y) z = x y z
              instance AddSemigroup.isScalarTower {α : Type u_5} [AddSemigroup α] :
              Equations
              • =
              instance Semigroup.isScalarTower {α : Type u_5} [Semigroup α] :
              IsScalarTower α α α
              Equations
              • =
              class IsCentralVAdd (M : Type u_9) (α : Type u_10) [VAdd M α] [VAdd Mᵃᵒᵖ α] :

              A typeclass indicating that the right (aka AddOpposite) and left actions by M on α are equal, that is that M acts centrally on α. This can be thought of as a version of commutativity for +ᵥ.

              • op_vadd_eq_vadd : ∀ (m : M) (a : α), AddOpposite.op m +ᵥ a = m +ᵥ a

                The right and left actions of M on α are equal.

              Instances
                theorem IsCentralVAdd.op_vadd_eq_vadd {M : Type u_9} {α : Type u_10} :
                ∀ {inst : VAdd M α} {inst_1 : VAdd Mᵃᵒᵖ α} [self : IsCentralVAdd M α] (m : M) (a : α), AddOpposite.op m +ᵥ a = m +ᵥ a

                The right and left actions of M on α are equal.

                class IsCentralScalar (M : Type u_9) (α : Type u_10) [SMul M α] [SMul Mᵐᵒᵖ α] :

                A typeclass indicating that the right (aka MulOpposite) and left actions by M on α are equal, that is that M acts centrally on α. This can be thought of as a version of commutativity for .

                • op_smul_eq_smul : ∀ (m : M) (a : α), MulOpposite.op m a = m a

                  The right and left actions of M on α are equal.

                Instances
                  @[simp]
                  theorem IsCentralScalar.op_smul_eq_smul {M : Type u_9} {α : Type u_10} :
                  ∀ {inst : SMul M α} {inst_1 : SMul Mᵐᵒᵖ α} [self : IsCentralScalar M α] (m : M) (a : α), MulOpposite.op m a = m a

                  The right and left actions of M on α are equal.

                  theorem IsCentralVAdd.unop_vadd_eq_vadd {M : Type u_9} {α : Type u_10} [VAdd M α] [VAdd Mᵃᵒᵖ α] [IsCentralVAdd M α] (m : Mᵃᵒᵖ) (a : α) :
                  theorem IsCentralScalar.unop_smul_eq_smul {M : Type u_9} {α : Type u_10} [SMul M α] [SMul Mᵐᵒᵖ α] [IsCentralScalar M α] (m : Mᵐᵒᵖ) (a : α) :
                  @[instance 50]
                  instance VAddCommClass.op_left {M : Type u_1} {N : Type u_2} {α : Type u_5} [VAdd M α] [VAdd Mᵃᵒᵖ α] [IsCentralVAdd M α] [VAdd N α] [VAddCommClass M N α] :
                  Equations
                  • =
                  @[instance 50]
                  instance SMulCommClass.op_left {M : Type u_1} {N : Type u_2} {α : Type u_5} [SMul M α] [SMul Mᵐᵒᵖ α] [IsCentralScalar M α] [SMul N α] [SMulCommClass M N α] :
                  Equations
                  • =
                  @[instance 50]
                  instance VAddCommClass.op_right {M : Type u_1} {N : Type u_2} {α : Type u_5} [VAdd M α] [VAdd N α] [VAdd Nᵃᵒᵖ α] [IsCentralVAdd N α] [VAddCommClass M N α] :
                  Equations
                  • =
                  @[instance 50]
                  instance SMulCommClass.op_right {M : Type u_1} {N : Type u_2} {α : Type u_5} [SMul M α] [SMul N α] [SMul Nᵐᵒᵖ α] [IsCentralScalar N α] [SMulCommClass M N α] :
                  Equations
                  • =
                  @[instance 50]
                  instance VAddAssocClass.op_left {M : Type u_1} {N : Type u_2} {α : Type u_5} [VAdd M α] [VAdd Mᵃᵒᵖ α] [IsCentralVAdd M α] [VAdd M N] [VAdd Mᵃᵒᵖ N] [IsCentralVAdd M N] [VAdd N α] [VAddAssocClass M N α] :
                  Equations
                  • =
                  @[instance 50]
                  instance IsScalarTower.op_left {M : Type u_1} {N : Type u_2} {α : Type u_5} [SMul M α] [SMul Mᵐᵒᵖ α] [IsCentralScalar M α] [SMul M N] [SMul Mᵐᵒᵖ N] [IsCentralScalar M N] [SMul N α] [IsScalarTower M N α] :
                  Equations
                  • =
                  @[instance 50]
                  instance VAddAssocClass.op_right {M : Type u_1} {N : Type u_2} {α : Type u_5} [VAdd M α] [VAdd M N] [VAdd N α] [VAdd Nᵃᵒᵖ α] [IsCentralVAdd N α] [VAddAssocClass M N α] :
                  Equations
                  • =
                  @[instance 50]
                  instance IsScalarTower.op_right {M : Type u_1} {N : Type u_2} {α : Type u_5} [SMul M α] [SMul M N] [SMul N α] [SMul Nᵐᵒᵖ α] [IsCentralScalar N α] [IsScalarTower M N α] :
                  Equations
                  • =
                  def VAdd.comp.vadd {M : Type u_1} {N : Type u_2} {α : Type u_5} [VAdd M α] (g : NM) (n : N) (a : α) :
                  α

                  Auxiliary definition for VAdd.comp, AddAction.compHom, etc.

                  Equations
                  Instances For
                    def SMul.comp.smul {M : Type u_1} {N : Type u_2} {α : Type u_5} [SMul M α] (g : NM) (n : N) (a : α) :
                    α

                    Auxiliary definition for SMul.comp, MulAction.compHom, DistribMulAction.compHom, Module.compHom, etc.

                    Equations
                    Instances For
                      @[reducible, inline]
                      abbrev VAdd.comp {M : Type u_1} {N : Type u_2} (α : Type u_5) [VAdd M α] (g : NM) :
                      VAdd N α

                      An additive action of M on α and a function N → M induces an additive action of N on α.

                      Equations
                      Instances For
                        @[reducible, inline]
                        abbrev SMul.comp {M : Type u_1} {N : Type u_2} (α : Type u_5) [SMul M α] (g : NM) :
                        SMul N α

                        An action of M on α and a function N → M induces an action of N on α.

                        Equations
                        Instances For
                          theorem VAdd.comp.isScalarTower {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd M β] [VAdd α β] [VAddAssocClass M α β] (g : NM) :

                          Given a tower of additive actions M → α → β, if we use SMul.comp to pull back both of M's actions by a map g : N → M, then we obtain a new tower of scalar actions N → α → β.

                          This cannot be an instance because it can cause infinite loops whenever the SMul arguments are still metavariables.

                          theorem SMul.comp.isScalarTower {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul M β] [SMul α β] [IsScalarTower M α β] (g : NM) :

                          Given a tower of scalar actions M → α → β, if we use SMul.comp to pull back both of M's actions by a map g : N → M, then we obtain a new tower of scalar actions N → α → β.

                          This cannot be an instance because it can cause infinite loops whenever the SMul arguments are still metavariables.

                          theorem VAdd.comp.vaddCommClass {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd β α] [VAddCommClass M β α] (g : NM) :

                          This cannot be an instance because it can cause infinite loops whenever the VAdd arguments are still metavariables.

                          theorem SMul.comp.smulCommClass {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul β α] [SMulCommClass M β α] (g : NM) :

                          This cannot be an instance because it can cause infinite loops whenever the SMul arguments are still metavariables.

                          theorem VAdd.comp.vaddCommClass' {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [VAdd M α] [VAdd β α] [VAddCommClass β M α] (g : NM) :

                          This cannot be an instance because it can cause infinite loops whenever the VAdd arguments are still metavariables.

                          theorem SMul.comp.smulCommClass' {M : Type u_1} {N : Type u_2} {α : Type u_5} {β : Type u_6} [SMul M α] [SMul β α] [SMulCommClass β M α] (g : NM) :

                          This cannot be an instance because it can cause infinite loops whenever the SMul arguments are still metavariables.

                          theorem add_vadd_comm {α : Type u_5} {β : Type u_6} [Add β] [VAdd α β] [VAddCommClass α β β] (s : α) (x : β) (y : β) :
                          x + (s +ᵥ y) = s +ᵥ (x + y)
                          theorem mul_smul_comm {α : Type u_5} {β : Type u_6} [Mul β] [SMul α β] [SMulCommClass α β β] (s : α) (x : β) (y : β) :
                          x * s y = s (x * y)

                          Note that the SMulCommClass α β β typeclass argument is usually satisfied by Algebra α β.

                          theorem vadd_add_assoc {α : Type u_5} {β : Type u_6} [Add β] [VAdd α β] [VAddAssocClass α β β] (r : α) (x : β) (y : β) :
                          r +ᵥ x + y = r +ᵥ (x + y)
                          theorem smul_mul_assoc {α : Type u_5} {β : Type u_6} [Mul β] [SMul α β] [IsScalarTower α β β] (r : α) (x : β) (y : β) :
                          r x * y = r (x * y)

                          Note that the IsScalarTower α β β typeclass argument is usually satisfied by Algebra α β.

                          theorem vadd_sub_assoc {α : Type u_5} {β : Type u_6} [SubNegMonoid β] [VAdd α β] [VAddAssocClass α β β] (r : α) (x : β) (y : β) :
                          r +ᵥ x - y = r +ᵥ (x - y)
                          theorem smul_div_assoc {α : Type u_5} {β : Type u_6} [DivInvMonoid β] [SMul α β] [IsScalarTower α β β] (r : α) (x : β) (y : β) :
                          r x / y = r (x / y)

                          Note that the IsScalarTower α β β typeclass argument is usually satisfied by Algebra α β.

                          theorem vadd_vadd_vadd_comm {α : Type u_5} {β : Type u_6} {γ : Type u_7} {δ : Type u_8} [VAdd α β] [VAdd α γ] [VAdd β δ] [VAdd α δ] [VAdd γ δ] [VAddAssocClass α β δ] [VAddAssocClass α γ δ] [VAddCommClass β γ δ] (a : α) (b : β) (c : γ) (d : δ) :
                          a +ᵥ b +ᵥ (c +ᵥ d) = a +ᵥ c +ᵥ (b +ᵥ d)
                          theorem smul_smul_smul_comm {α : Type u_5} {β : Type u_6} {γ : Type u_7} {δ : Type u_8} [SMul α β] [SMul α γ] [SMul β δ] [SMul α δ] [SMul γ δ] [IsScalarTower α β δ] [IsScalarTower α γ δ] [SMulCommClass β γ δ] (a : α) (b : β) (c : γ) (d : δ) :
                          (a b) c d = (a c) b d
                          theorem vadd_add_vadd_comm {α : Type u_5} {β : Type u_6} [Add α] [Add β] [VAdd α β] [VAddAssocClass α β β] [VAddAssocClass α α β] [VAddCommClass α β β] (a : α) (b : β) (c : α) (d : β) :
                          a +ᵥ b + (c +ᵥ d) = a + c +ᵥ (b + d)
                          theorem smul_mul_smul_comm {α : Type u_5} {β : Type u_6} [Mul α] [Mul β] [SMul α β] [IsScalarTower α β β] [IsScalarTower α α β] [SMulCommClass α β β] (a : α) (b : β) (c : α) (d : β) :
                          a b * c d = (a * c) (b * d)

                          Note that the IsScalarTower α β β and SMulCommClass α β β typeclass arguments are usually satisfied by Algebra α β.

                          @[deprecated]
                          theorem smul_mul_smul {α : Type u_5} {β : Type u_6} [Mul α] [Mul β] [SMul α β] [IsScalarTower α β β] [IsScalarTower α α β] [SMulCommClass α β β] (a : α) (b : β) (c : α) (d : β) :
                          a b * c d = (a * c) (b * d)

                          Alias of smul_mul_smul_comm.


                          Note that the IsScalarTower α β β and SMulCommClass α β β typeclass arguments are usually satisfied by Algebra α β.

                          @[deprecated]
                          theorem vadd_add_vadd {α : Type u_5} {β : Type u_6} [Add α] [Add β] [VAdd α β] [VAddAssocClass α β β] [VAddAssocClass α α β] [VAddCommClass α β β] (a : α) (b : β) (c : α) (d : β) :
                          a +ᵥ b + (c +ᵥ d) = a + c +ᵥ (b + d)
                          theorem add_vadd_add_comm {α : Type u_5} {β : Type u_6} [Add α] [Add β] [VAdd α β] [VAddAssocClass α β β] [VAddAssocClass α α β] [VAddCommClass α β β] (a : α) (b : α) (c : β) (d : β) :
                          a + b +ᵥ (c + d) = a +ᵥ c + (b +ᵥ d)
                          theorem mul_smul_mul_comm {α : Type u_5} {β : Type u_6} [Mul α] [Mul β] [SMul α β] [IsScalarTower α β β] [IsScalarTower α α β] [SMulCommClass α β β] (a : α) (b : α) (c : β) (d : β) :
                          (a * b) (c * d) = a c * b d

                          Note that the IsScalarTower α β β and SMulCommClass α β β typeclass arguments are usually satisfied by Algebra α β.

                          theorem AddCommute.vadd_right {M : Type u_1} {α : Type u_5} [VAdd M α] [Add α] [VAddCommClass M α α] [VAddAssocClass M α α] {a : α} {b : α} (h : AddCommute a b) (r : M) :
                          theorem Commute.smul_right {M : Type u_1} {α : Type u_5} [SMul M α] [Mul α] [SMulCommClass M α α] [IsScalarTower M α α] {a : α} {b : α} (h : Commute a b) (r : M) :
                          Commute a (r b)
                          theorem AddCommute.vadd_left {M : Type u_1} {α : Type u_5} [VAdd M α] [Add α] [VAddCommClass M α α] [VAddAssocClass M α α] {a : α} {b : α} (h : AddCommute a b) (r : M) :
                          theorem Commute.smul_left {M : Type u_1} {α : Type u_5} [SMul M α] [Mul α] [SMulCommClass M α α] [IsScalarTower M α α] {a : α} {b : α} (h : Commute a b) (r : M) :
                          Commute (r a) b
                          theorem vadd_vadd {M : Type u_1} {α : Type u_5} [AddMonoid M] [AddAction M α] (a₁ : M) (a₂ : M) (b : α) :
                          a₁ +ᵥ (a₂ +ᵥ b) = a₁ + a₂ +ᵥ b
                          theorem smul_smul {M : Type u_1} {α : Type u_5} [Monoid M] [MulAction M α] (a₁ : M) (a₂ : M) (b : α) :
                          a₁ a₂ b = (a₁ * a₂) b
                          @[simp]
                          theorem zero_vadd (M : Type u_1) {α : Type u_5} [AddMonoid M] [AddAction M α] (b : α) :
                          0 +ᵥ b = b
                          @[simp]
                          theorem one_smul (M : Type u_1) {α : Type u_5} [Monoid M] [MulAction M α] (b : α) :
                          1 b = b
                          theorem zero_vadd_eq_id (M : Type u_1) {α : Type u_5} [AddMonoid M] [AddAction M α] :
                          (fun (x : α) => 0 +ᵥ x) = id

                          VAdd version of zero_add_eq_id

                          theorem one_smul_eq_id (M : Type u_1) {α : Type u_5} [Monoid M] [MulAction M α] :
                          (fun (x : α) => 1 x) = id

                          SMul version of one_mul_eq_id

                          theorem comp_vadd_left (M : Type u_1) {α : Type u_5} [AddMonoid M] [AddAction M α] (a₁ : M) (a₂ : M) :
                          ((fun (x : α) => a₁ +ᵥ x) fun (x : α) => a₂ +ᵥ x) = fun (x : α) => a₁ + a₂ +ᵥ x

                          VAdd version of comp_add_left

                          theorem comp_smul_left (M : Type u_1) {α : Type u_5} [Monoid M] [MulAction M α] (a₁ : M) (a₂ : M) :
                          ((fun (x : α) => a₁ x) fun (x : α) => a₂ x) = fun (x : α) => (a₁ * a₂) x

                          SMul version of comp_mul_left

                          theorem Function.Injective.addAction.proof_1 {M : Type u_2} {α : Type u_3} {β : Type u_1} [AddMonoid M] [AddAction M α] [VAdd M β] (f : βα) (hf : Function.Injective f) (smul : ∀ (c : M) (x : β), f (c +ᵥ x) = c +ᵥ f x) (x : β) :
                          0 +ᵥ x = x
                          @[reducible, inline]
                          abbrev Function.Injective.addAction {M : Type u_1} {α : Type u_5} {β : Type u_6} [AddMonoid M] [AddAction M α] [VAdd M β] (f : βα) (hf : Function.Injective f) (smul : ∀ (c : M) (x : β), f (c +ᵥ x) = c +ᵥ f x) :

                          Pullback an additive action along an injective map respecting +ᵥ.

                          Equations
                          Instances For
                            theorem Function.Injective.addAction.proof_2 {M : Type u_2} {α : Type u_3} {β : Type u_1} [AddMonoid M] [AddAction M α] [VAdd M β] (f : βα) (hf : Function.Injective f) (smul : ∀ (c : M) (x : β), f (c +ᵥ x) = c +ᵥ f x) (c₁ : M) (c₂ : M) (x : β) :
                            c₁ + c₂ +ᵥ x = c₁ +ᵥ (c₂ +ᵥ x)
                            @[reducible, inline]
                            abbrev Function.Injective.mulAction {M : Type u_1} {α : Type u_5} {β : Type u_6} [Monoid M] [MulAction M α] [SMul M β] (f : βα) (hf : Function.Injective f) (smul : ∀ (c : M) (x : β), f (c x) = c f x) :

                            Pullback a multiplicative action along an injective map respecting . See note [reducible non-instances].

                            Equations
                            Instances For
                              @[reducible, inline]
                              abbrev Function.Surjective.addAction {M : Type u_1} {α : Type u_5} {β : Type u_6} [AddMonoid M] [AddAction M α] [VAdd M β] (f : αβ) (hf : Function.Surjective f) (smul : ∀ (c : M) (x : α), f (c +ᵥ x) = c +ᵥ f x) :

                              Pushforward an additive action along a surjective map respecting +ᵥ.

                              Equations
                              Instances For
                                theorem Function.Surjective.addAction.proof_2 {M : Type u_2} {α : Type u_3} {β : Type u_1} [AddMonoid M] [AddAction M α] [VAdd M β] (f : αβ) (hf : Function.Surjective f) (smul : ∀ (c : M) (x : α), f (c +ᵥ x) = c +ᵥ f x) (a : M) (a : M) (y : β) :
                                a✝ + a +ᵥ y = a✝ +ᵥ (a +ᵥ y)
                                theorem Function.Surjective.addAction.proof_1 {M : Type u_2} {α : Type u_3} {β : Type u_1} [AddMonoid M] [AddAction M α] [VAdd M β] (f : αβ) (hf : Function.Surjective f) (smul : ∀ (c : M) (x : α), f (c +ᵥ x) = c +ᵥ f x) (y : β) :
                                0 +ᵥ y = y
                                @[reducible, inline]
                                abbrev Function.Surjective.mulAction {M : Type u_1} {α : Type u_5} {β : Type u_6} [Monoid M] [MulAction M α] [SMul M β] (f : αβ) (hf : Function.Surjective f) (smul : ∀ (c : M) (x : α), f (c x) = c f x) :

                                Pushforward a multiplicative action along a surjective map respecting . See note [reducible non-instances].

                                Equations
                                Instances For
                                  theorem AddMonoid.toAddAction.proof_2 (M : Type u_1) [AddMonoid M] (a : M) (b : M) (c : M) :
                                  a + b + c = a + (b + c)
                                  theorem AddMonoid.toAddAction.proof_1 (M : Type u_1) [AddMonoid M] (a : M) :
                                  0 + a = a
                                  @[instance 910]
                                  instance AddMonoid.toAddAction (M : Type u_1) [AddMonoid M] :

                                  The regular action of a monoid on itself by left addition.

                                  This is promoted to an AddTorsor by addGroup_is_addTorsor.

                                  Equations
                                  @[instance 910]
                                  instance Monoid.toMulAction (M : Type u_1) [Monoid M] :

                                  The regular action of a monoid on itself by left multiplication.

                                  This is promoted to a module by Semiring.toModule.

                                  Equations
                                  instance VAddAssocClass.left (M : Type u_1) {α : Type u_5} [AddMonoid M] [AddAction M α] :
                                  Equations
                                  • =
                                  instance IsScalarTower.left (M : Type u_1) {α : Type u_5} [Monoid M] [MulAction M α] :
                                  Equations
                                  • =
                                  theorem smul_pow {M : Type u_1} {N : Type u_2} [Monoid M] [Monoid N] [MulAction M N] [IsScalarTower M N N] [SMulCommClass M N N] (r : M) (x : N) (n : ) :
                                  (r x) ^ n = r ^ n x ^ n
                                  @[simp]
                                  theorem neg_vadd_vadd {G : Type u_3} {α : Type u_5} [AddGroup G] [AddAction G α] (g : G) (a : α) :
                                  -g +ᵥ (g +ᵥ a) = a
                                  @[simp]
                                  theorem inv_smul_smul {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] (g : G) (a : α) :
                                  g⁻¹ g a = a
                                  @[simp]
                                  theorem vadd_neg_vadd {G : Type u_3} {α : Type u_5} [AddGroup G] [AddAction G α] (g : G) (a : α) :
                                  g +ᵥ (-g +ᵥ a) = a
                                  @[simp]
                                  theorem smul_inv_smul {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] (g : G) (a : α) :
                                  g g⁻¹ a = a
                                  theorem neg_vadd_eq_iff {G : Type u_3} {α : Type u_5} [AddGroup G] [AddAction G α] {g : G} {a : α} {b : α} :
                                  -g +ᵥ a = b a = g +ᵥ b
                                  theorem inv_smul_eq_iff {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] {g : G} {a : α} {b : α} :
                                  g⁻¹ a = b a = g b
                                  theorem eq_neg_vadd_iff {G : Type u_3} {α : Type u_5} [AddGroup G] [AddAction G α] {g : G} {a : α} {b : α} :
                                  a = -g +ᵥ b g +ᵥ a = b
                                  theorem eq_inv_smul_iff {G : Type u_3} {α : Type u_5} [Group G] [MulAction G α] {g : G} {a : α} {b : α} :
                                  a = g⁻¹ b g a = b
                                  @[simp]
                                  theorem Commute.smul_right_iff {G : Type u_3} {H : Type u_4} [Group G] {g : G} [Mul H] [MulAction G H] [SMulCommClass G H H] [IsScalarTower G H H] {a : H} {b : H} :
                                  Commute a (g b) Commute a b
                                  @[simp]
                                  theorem Commute.smul_left_iff {G : Type u_3} {H : Type u_4} [Group G] {g : G} [Mul H] [MulAction G H] [SMulCommClass G H H] [IsScalarTower G H H] {a : H} {b : H} :
                                  Commute (g a) b Commute a b
                                  theorem smul_inv {G : Type u_3} {H : Type u_4} [Group G] [Group H] [MulAction G H] [SMulCommClass G H H] [IsScalarTower G H H] (g : G) (a : H) :
                                  theorem smul_zpow {G : Type u_3} {H : Type u_4} [Group G] [Group H] [MulAction G H] [SMulCommClass G H H] [IsScalarTower G H H] (g : G) (a : H) (n : ) :
                                  (g a) ^ n = g ^ n a ^ n
                                  theorem SMulCommClass.of_commMonoid (A : Type u_9) (B : Type u_10) (G : Type u_11) [CommMonoid G] [SMul A G] [SMul B G] [IsScalarTower A G G] [IsScalarTower B G G] :
                                  theorem AddAction.toFun.proof_1 (M : Type u_1) (α : Type u_2) [AddMonoid M] [AddAction M α] (y₁ : α) (y₂ : α) (H : (fun (y : α) (x : M) => x +ᵥ y) y₁ = (fun (y : α) (x : M) => x +ᵥ y) y₂) :
                                  y₁ = y₂
                                  def AddAction.toFun (M : Type u_1) (α : Type u_5) [AddMonoid M] [AddAction M α] :
                                  α Mα

                                  Embedding of α into functions M → α induced by an additive action of M on α.

                                  Equations
                                  Instances For
                                    def MulAction.toFun (M : Type u_1) (α : Type u_5) [Monoid M] [MulAction M α] :
                                    α Mα

                                    Embedding of α into functions M → α induced by a multiplicative action of M on α.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem AddAction.toFun_apply {M : Type u_1} {α : Type u_5} [AddMonoid M] [AddAction M α] (x : M) (y : α) :
                                      (AddAction.toFun M α) y x = x +ᵥ y
                                      @[simp]
                                      theorem MulAction.toFun_apply {M : Type u_1} {α : Type u_5} [Monoid M] [MulAction M α] (x : M) (y : α) :
                                      (MulAction.toFun M α) y x = x y
                                      theorem vadd_zero_vadd {α : Type u_5} {M : Type u_9} (N : Type u_10) [AddMonoid N] [VAdd M N] [AddAction N α] [VAdd M α] [VAddAssocClass M N α] (x : M) (y : α) :
                                      x +ᵥ 0 +ᵥ y = x +ᵥ y
                                      theorem smul_one_smul {α : Type u_5} {M : Type u_9} (N : Type u_10) [Monoid N] [SMul M N] [MulAction N α] [SMul M α] [IsScalarTower M N α] (x : M) (y : α) :
                                      (x 1) y = x y
                                      @[simp]
                                      theorem vadd_zero_add {M : Type u_9} {N : Type u_10} [AddZeroClass N] [VAdd M N] [VAddAssocClass M N N] (x : M) (y : N) :
                                      x +ᵥ 0 + y = x +ᵥ y
                                      @[simp]
                                      theorem smul_one_mul {M : Type u_9} {N : Type u_10} [MulOneClass N] [SMul M N] [IsScalarTower M N N] (x : M) (y : N) :
                                      x 1 * y = x y
                                      @[simp]
                                      theorem add_vadd_zero {M : Type u_9} {N : Type u_10} [AddZeroClass N] [VAdd M N] [VAddCommClass M N N] (x : M) (y : N) :
                                      y + (x +ᵥ 0) = x +ᵥ y
                                      @[simp]
                                      theorem mul_smul_one {M : Type u_9} {N : Type u_10} [MulOneClass N] [SMul M N] [SMulCommClass M N N] (x : M) (y : N) :
                                      y * x 1 = x y
                                      theorem VAddAssocClass.of_vadd_zero_add {M : Type u_9} {N : Type u_10} [AddMonoid N] [VAdd M N] (h : ∀ (x : M) (y : N), x +ᵥ 0 + y = x +ᵥ y) :
                                      theorem IsScalarTower.of_smul_one_mul {M : Type u_9} {N : Type u_10} [Monoid N] [SMul M N] (h : ∀ (x : M) (y : N), x 1 * y = x y) :
                                      theorem VAddCommClass.of_add_vadd_zero {M : Type u_9} {N : Type u_10} [AddMonoid N] [VAdd M N] (H : ∀ (x : M) (y : N), y + (x +ᵥ 0) = x +ᵥ y) :
                                      theorem SMulCommClass.of_mul_smul_one {M : Type u_9} {N : Type u_10} [Monoid N] [SMul M N] (H : ∀ (x : M) (y : N), y * x 1 = x y) :