HepLean Documentation

Mathlib.Algebra.Group.Subgroup.Order

Facts about ordered structures and ordered instances on subgroups #

@[simp]
theorem mabs_mem_iff {S : Type u_1} {G : Type u_2} [Group G] [LinearOrder G] {x✝ : SetLike S G} [InvMemClass S G] {H : S} {x : G} :
mabs x H x H
@[simp]
theorem abs_mem_iff {S : Type u_1} {G : Type u_2} [AddGroup G] [LinearOrder G] {x✝ : SetLike S G} [NegMemClass S G] {H : S} {x : G} :
|x| H x H
Equations
  • =
theorem Subgroup.NormalizerCondition.normal_of_coatom {G : Type u_1} [Group G] (H : Subgroup G) (hnc : NormalizerCondition G) (hmax : IsCoatom H) :
H.Normal

In a group that satisfies the normalizer condition, every maximal subgroup is normal

@[simp]
theorem Subgroup.isCoatom_comap {G : Type u_1} [Group G] {H : Type u_2} [Group H] (f : G ≃* H) {K : Subgroup H} :
@[simp]
theorem Subgroup.isCoatom_map {G : Type u_1} [Group G] (H : Subgroup G) (f : G ≃* H) {K : Subgroup G} :
theorem Subgroup.isCoatom_comap_of_surjective {G : Type u_1} [Group G] {H : Type u_2} [Group H] {φ : G →* H} (hφ : Function.Surjective φ) {M : Subgroup H} (hM : IsCoatom M) :
@[instance 75]
instance SubgroupClass.toOrderedCommGroup {G : Type u_1} {S : Type u_2} [SetLike S G] [OrderedCommGroup G] [SubgroupClass S G] (H : S) :

A subgroup of an OrderedCommGroup is an OrderedCommGroup.

Equations
@[instance 75]

An additive subgroup of an AddOrderedCommGroup is an AddOrderedCommGroup.

Equations
@[instance 75]

A subgroup of a LinearOrderedCommGroup is a LinearOrderedCommGroup.

Equations
@[instance 75]

An additive subgroup of a LinearOrderedAddCommGroup is a LinearOrderedAddCommGroup.

Equations

A subgroup of an OrderedCommGroup is an OrderedCommGroup.

Equations

An AddSubgroup of an AddOrderedCommGroup is an AddOrderedCommGroup.

Equations

A subgroup of a LinearOrderedCommGroup is a LinearOrderedCommGroup.

Equations

An AddSubgroup of a LinearOrderedAddCommGroup is a LinearOrderedAddCommGroup.

Equations
theorem Subsemigroup.strictMono_topEquiv {G : Type u_1} [OrderedCommMonoid G] :
StrictMono Subsemigroup.topEquiv
theorem AddSubsemigroup.strictMono_topEquiv {G : Type u_1} [OrderedAddCommMonoid G] :
StrictMono AddSubsemigroup.topEquiv
theorem MulEquiv.strictMono_symm {G : Type u_1} {G' : Type u_2} [LinearOrderedCommMonoid G] [LinearOrderedCommMonoid G'] {e : G ≃* G'} (he : StrictMono e) :
StrictMono e.symm
theorem AddEquiv.strictMono_symm {G : Type u_1} {G' : Type u_2} [LinearOrderedAddCommMonoid G] [LinearOrderedAddCommMonoid G'] {e : G ≃+ G'} (he : StrictMono e) :
StrictMono e.symm