HepLean Documentation

Mathlib.Algebra.Order.Field.Basic

Lemmas about linear ordered (semi)fields #

Relating one division with another term. #

@[deprecated lt_div_iff₀]
theorem lt_div_iff {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (hc : 0 < c) :
a < b / c a * c < b
@[deprecated lt_div_iff₀']
theorem lt_div_iff' {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (hc : 0 < c) :
a < b / c c * a < b
@[deprecated div_lt_iff₀]
theorem div_lt_iff {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (hc : 0 < c) :
b / c < a b < a * c
@[deprecated div_lt_iff₀']
theorem div_lt_iff' {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (hc : 0 < c) :
b / c < a b < c * a
@[deprecated inv_mul_le_iff₀]
theorem inv_mul_le_iff {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (h : 0 < b) :
b⁻¹ * a c a b * c
@[deprecated inv_mul_le_iff₀']
theorem inv_mul_le_iff' {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (h : 0 < b) :
b⁻¹ * a c a c * b
@[deprecated mul_inv_le_iff₀']
theorem mul_inv_le_iff {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (h : 0 < b) :
a * b⁻¹ c a b * c
@[deprecated mul_inv_le_iff₀]
theorem mul_inv_le_iff' {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (h : 0 < b) :
a * b⁻¹ c a c * b
@[deprecated inv_mul_lt_iff₀]
theorem inv_mul_lt_iff {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (h : 0 < b) :
b⁻¹ * a < c a < b * c
@[deprecated inv_mul_lt_iff₀']
theorem inv_mul_lt_iff' {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (h : 0 < b) :
b⁻¹ * a < c a < c * b
@[deprecated mul_inv_lt_iff₀']
theorem mul_inv_lt_iff {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (h : 0 < b) :
a * b⁻¹ < c a < b * c
@[deprecated mul_inv_lt_iff₀]
theorem mul_inv_lt_iff' {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (h : 0 < b) :
a * b⁻¹ < c a < c * b
@[deprecated inv_le_iff_one_le_mul₀]
theorem inv_pos_le_iff_one_le_mul {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) :
a⁻¹ b 1 b * a
@[deprecated inv_le_iff_one_le_mul₀']
theorem inv_pos_le_iff_one_le_mul' {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) :
a⁻¹ b 1 a * b
@[deprecated inv_lt_iff_one_lt_mul₀]
theorem inv_pos_lt_iff_one_lt_mul {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) :
a⁻¹ < b 1 < b * a
@[deprecated inv_lt_iff_one_lt_mul₀']
theorem inv_pos_lt_iff_one_lt_mul' {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) :
a⁻¹ < b 1 < a * b
@[deprecated div_le_of_le_mul₀]
theorem div_le_of_nonneg_of_le_mul {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (hb : 0 b) (hc : 0 c) (h : a c * b) :
a / b c

One direction of div_le_iff where b is allowed to be 0 (but c must be nonnegative)

@[deprecated mul_le_of_le_div₀]
theorem mul_le_of_nonneg_of_le_div {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (hb : 0 b) (hc : 0 c) (h : a b / c) :
a * c b

One direction of div_le_iff where c is allowed to be 0 (but b must be nonnegative)

@[deprecated div_le_one_of_le₀]
theorem div_le_one_of_le {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (h : a b) (hb : 0 b) :
a / b 1
@[deprecated mul_inv_le_one_of_le₀]
theorem mul_inv_le_one_of_le {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (h : a b) (hb : 0 b) :
a * b⁻¹ 1
@[deprecated inv_mul_le_one_of_le₀]
theorem inv_mul_le_one_of_le {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (h : a b) (hb : 0 b) :
b⁻¹ * a 1

Bi-implications of inequalities using inversions #

@[deprecated inv_anti₀]
theorem inv_le_inv_of_le {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (h : a b) :
@[deprecated inv_le_inv₀]
theorem inv_le_inv {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :

See inv_le_inv_of_le for the implication from right-to-left with one fewer assumption.

@[deprecated inv_le_comm₀]
theorem inv_le {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :

In a linear ordered field, for positive a and b we have a⁻¹ ≤ b ↔ b⁻¹ ≤ a. See also inv_le_of_inv_le for a one-sided implication with one fewer assumption.

@[deprecated inv_le_of_inv_le₀]
theorem inv_le_of_inv_le {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (h : a⁻¹ b) :
@[deprecated le_inv_comm₀]
theorem le_inv {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :
@[deprecated inv_lt_inv₀]
theorem inv_lt_inv {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :
a⁻¹ < b⁻¹ b < a

See inv_lt_inv_of_lt for the implication from right-to-left with one fewer assumption.

@[deprecated inv_strictAnti₀]
theorem inv_lt_inv_of_lt {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (hb : 0 < b) (h : b < a) :
@[deprecated inv_lt_comm₀]
theorem inv_lt {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :
a⁻¹ < b b⁻¹ < a

In a linear ordered field, for positive a and b we have a⁻¹ < b ↔ b⁻¹ < a. See also inv_lt_of_inv_lt for a one-sided implication with one fewer assumption.

@[deprecated inv_lt_of_inv_lt₀]
theorem inv_lt_of_inv_lt {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (h : a⁻¹ < b) :
b⁻¹ < a
@[deprecated lt_inv_comm₀]
theorem lt_inv {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :
a < b⁻¹ b < a⁻¹
@[deprecated inv_lt_one_of_one_lt₀]
theorem inv_lt_one {α : Type u_2} [LinearOrderedSemifield α] {a : α} (ha : 1 < a) :
a⁻¹ < 1
@[deprecated one_lt_inv₀]
theorem one_lt_inv {α : Type u_2} [LinearOrderedSemifield α] {a : α} (h₁ : 0 < a) (h₂ : a < 1) :
1 < a⁻¹
@[deprecated inv_le_one_of_one_le₀]
theorem inv_le_one {α : Type u_2} [LinearOrderedSemifield α] {a : α} (ha : 1 a) :
@[deprecated one_le_inv₀]
theorem one_le_inv {α : Type u_2} [LinearOrderedSemifield α] {a : α} (h₁ : 0 < a) (h₂ : a 1) :
@[deprecated inv_lt_one₀]
theorem inv_lt_one_iff_of_pos {α : Type u_2} [LinearOrderedSemifield α] {a : α} (h₀ : 0 < a) :
a⁻¹ < 1 1 < a
@[deprecated inv_lt_one_iff₀]
theorem inv_lt_one_iff {α : Type u_2} [LinearOrderedSemifield α] {a : α} :
a⁻¹ < 1 a 0 1 < a
@[deprecated one_lt_inv_iff₀]
theorem one_lt_inv_iff {α : Type u_2} [LinearOrderedSemifield α] {a : α} :
1 < a⁻¹ 0 < a a < 1
@[deprecated inv_le_one_iff₀]
theorem inv_le_one_iff {α : Type u_2} [LinearOrderedSemifield α] {a : α} :
a⁻¹ 1 a 0 1 a
@[deprecated one_le_inv_iff₀]
theorem one_le_inv_iff {α : Type u_2} [LinearOrderedSemifield α] {a : α} :
1 a⁻¹ 0 < a a 1

Relating two divisions. #

@[deprecated div_le_div_of_nonneg_right]
theorem div_le_div_of_le_of_nonneg {G₀ : Type u_2} [GroupWithZero G₀] [PartialOrder G₀] [ZeroLEOneClass G₀] [PosMulReflectLT G₀] {a b c : G₀} [MulPosMono G₀] (hab : a b) (hc : 0 c) :
a / c b / c

Alias of div_le_div_of_nonneg_right.

@[deprecated div_lt_div_of_pos_right]
theorem div_lt_div_of_lt {G₀ : Type u_2} [GroupWithZero G₀] [PartialOrder G₀] [ZeroLEOneClass G₀] [PosMulReflectLT G₀] {a b c : G₀} [MulPosStrictMono G₀] (h : a < b) (hc : 0 < c) :
a / c < b / c

Alias of div_lt_div_of_pos_right.

@[deprecated div_le_div_of_nonneg_left]
theorem div_le_div_of_le_left {G₀ : Type u_2} [GroupWithZero G₀] [PartialOrder G₀] [ZeroLEOneClass G₀] [PosMulReflectLT G₀] {a b c : G₀} [MulPosMono G₀] [PosMulMono G₀] (ha : 0 a) (hc : 0 < c) (h : c b) :
a / b a / c

Alias of div_le_div_of_nonneg_left.

@[deprecated div_lt_div_of_pos_left]
theorem div_lt_div_of_lt_left {G₀ : Type u_2} [GroupWithZero G₀] [PartialOrder G₀] [ZeroLEOneClass G₀] [PosMulReflectLT G₀] {a b c : G₀} [MulPosStrictMono G₀] [PosMulStrictMono G₀] (ha : 0 < a) (hc : 0 < c) (h : c < b) :
a / b < a / c

Alias of div_lt_div_of_pos_left.

@[deprecated div_le_div_of_nonneg_right]
theorem div_le_div_of_le {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (hc : 0 c) (hab : a b) :
a / c b / c
@[deprecated div_le_div_iff_of_pos_right]
theorem div_le_div_right {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (hc : 0 < c) :
a / c b / c a b
@[deprecated div_lt_div_iff_of_pos_right]
theorem div_lt_div_right {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (hc : 0 < c) :
a / c < b / c a < b
@[deprecated div_lt_div_iff_of_pos_left]
theorem div_lt_div_left {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) :
a / b < a / c c < b
@[deprecated div_le_div_iff_of_pos_left]
theorem div_le_div_left {α : Type u_2} [LinearOrderedSemifield α] {a b c : α} (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) :
a / b a / c c b
@[deprecated div_lt_div_iff₀]
theorem div_lt_div_iff {α : Type u_2} [LinearOrderedSemifield α] {a b c d : α} (b0 : 0 < b) (d0 : 0 < d) :
a / b < c / d a * d < c * b
@[deprecated div_le_div_iff₀]
theorem div_le_div_iff {α : Type u_2} [LinearOrderedSemifield α] {a b c d : α} (b0 : 0 < b) (d0 : 0 < d) :
a / b c / d a * d c * b
@[deprecated div_le_div₀]
theorem div_le_div {α : Type u_2} [LinearOrderedSemifield α] {a b c d : α} (hc : 0 c) (hac : a c) (hd : 0 < d) (hbd : d b) :
a / b c / d
@[deprecated div_lt_div₀]
theorem div_lt_div {α : Type u_2} [LinearOrderedSemifield α] {a b c d : α} (hac : a < c) (hbd : d b) (c0 : 0 c) (d0 : 0 < d) :
a / b < c / d
@[deprecated div_lt_div₀']
theorem div_lt_div' {α : Type u_2} [LinearOrderedSemifield α] {a b c d : α} (hac : a c) (hbd : d < b) (c0 : 0 < c) (d0 : 0 < d) :
a / b < c / d

Relating one division and involving 1 #

theorem div_le_self {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 a) (hb : 1 b) :
a / b a
theorem div_lt_self {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 1 < b) :
a / b < a
theorem le_div_self {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 a) (hb₀ : 0 < b) (hb₁ : b 1) :
a a / b
theorem one_le_div {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (hb : 0 < b) :
1 a / b b a
theorem div_le_one {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (hb : 0 < b) :
a / b 1 a b
theorem one_lt_div {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (hb : 0 < b) :
1 < a / b b < a
theorem div_lt_one {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (hb : 0 < b) :
a / b < 1 a < b
theorem one_div_le {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :
1 / a b 1 / b a
theorem one_div_lt {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :
1 / a < b 1 / b < a
theorem le_one_div {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :
a 1 / b b 1 / a
theorem lt_one_div {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :
a < 1 / b b < 1 / a
theorem Bound.one_lt_div_of_pos_of_lt {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (b0 : 0 < b) :
b < a1 < a / b
theorem Bound.div_lt_one_of_pos_of_lt {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (b0 : 0 < b) :
a < ba / b < 1

Relating two divisions, involving 1 #

theorem one_div_le_one_div_of_le {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (h : a b) :
1 / b 1 / a
theorem one_div_lt_one_div_of_lt {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (h : a < b) :
1 / b < 1 / a
theorem le_of_one_div_le_one_div {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (h : 1 / a 1 / b) :
b a
theorem lt_of_one_div_lt_one_div {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (h : 1 / a < 1 / b) :
b < a
theorem one_div_le_one_div {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :
1 / a 1 / b b a

For the single implications with fewer assumptions, see one_div_le_one_div_of_le and le_of_one_div_le_one_div

theorem one_div_lt_one_div {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) (hb : 0 < b) :
1 / a < 1 / b b < a

For the single implications with fewer assumptions, see one_div_lt_one_div_of_lt and lt_of_one_div_lt_one_div

theorem one_lt_one_div {α : Type u_2} [LinearOrderedSemifield α] {a : α} (h1 : 0 < a) (h2 : a < 1) :
1 < 1 / a
theorem one_le_one_div {α : Type u_2} [LinearOrderedSemifield α] {a : α} (h1 : 0 < a) (h2 : a 1) :
1 1 / a

Results about halving. #

The equalities also hold in semifields of characteristic 0.

theorem half_pos {α : Type u_2} [LinearOrderedSemifield α] {a : α} (h : 0 < a) :
0 < a / 2
theorem one_half_pos {α : Type u_2} [LinearOrderedSemifield α] :
0 < 1 / 2
@[simp]
theorem half_le_self_iff {α : Type u_2} [LinearOrderedSemifield α] {a : α} :
a / 2 a 0 a
@[simp]
theorem half_lt_self_iff {α : Type u_2} [LinearOrderedSemifield α] {a : α} :
a / 2 < a 0 < a
theorem half_le_self {α : Type u_2} [LinearOrderedSemifield α] {a : α} :
0 aa / 2 a

Alias of the reverse direction of half_le_self_iff.

theorem half_lt_self {α : Type u_2} [LinearOrderedSemifield α] {a : α} :
0 < aa / 2 < a

Alias of the reverse direction of half_lt_self_iff.

theorem div_two_lt_of_pos {α : Type u_2} [LinearOrderedSemifield α] {a : α} :
0 < aa / 2 < a

Alias of the reverse direction of half_lt_self_iff.


Alias of the reverse direction of half_lt_self_iff.

theorem one_half_lt_one {α : Type u_2} [LinearOrderedSemifield α] :
1 / 2 < 1
theorem left_lt_add_div_two {α : Type u_2} [LinearOrderedSemifield α] {a b : α} :
a < (a + b) / 2 a < b
theorem add_div_two_lt_right {α : Type u_2} [LinearOrderedSemifield α] {a b : α} :
(a + b) / 2 < b a < b
theorem add_thirds {α : Type u_2} [LinearOrderedSemifield α] (a : α) :
a / 3 + a / 3 + a / 3 = a

Miscellaneous lemmas #

@[simp]
theorem div_pos_iff_of_pos_left {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (ha : 0 < a) :
0 < a / b 0 < b
@[simp]
theorem div_pos_iff_of_pos_right {α : Type u_2} [LinearOrderedSemifield α] {a b : α} (hb : 0 < b) :
0 < a / b 0 < a
theorem mul_le_mul_of_mul_div_le {α : Type u_2} [LinearOrderedSemifield α] {a b c d : α} (h : a * (b / c) d) (hc : 0 < c) :
b * a d * c
theorem div_mul_le_div_mul_of_div_le_div {α : Type u_2} [LinearOrderedSemifield α] {a b c d e : α} (h : a / b c / d) (he : 0 e) :
a / (b * e) c / (d * e)
theorem exists_pos_mul_lt {α : Type u_2} [LinearOrderedSemifield α] {a : α} (h : 0 < a) (b : α) :
∃ (c : α), 0 < c b * c < a
theorem exists_pos_lt_mul {α : Type u_2} [LinearOrderedSemifield α] {a : α} (h : 0 < a) (b : α) :
∃ (c : α), 0 < c b < c * a
theorem monotone_div_right_of_nonneg {α : Type u_2} [LinearOrderedSemifield α] {a : α} (ha : 0 a) :
Monotone fun (x : α) => x / a
theorem strictMono_div_right_of_pos {α : Type u_2} [LinearOrderedSemifield α] {a : α} (ha : 0 < a) :
StrictMono fun (x : α) => x / a
theorem Monotone.div_const {α : Type u_2} [LinearOrderedSemifield α] {β : Type u_4} [Preorder β] {f : βα} (hf : Monotone f) {c : α} (hc : 0 c) :
Monotone fun (x : β) => f x / c
theorem StrictMono.div_const {α : Type u_2} [LinearOrderedSemifield α] {β : Type u_4} [Preorder β] {f : βα} (hf : StrictMono f) {c : α} (hc : 0 < c) :
StrictMono fun (x : β) => f x / c
@[instance 100]
Equations
  • =
theorem min_div_div_right {α : Type u_2} [LinearOrderedSemifield α] {c : α} (hc : 0 c) (a b : α) :
a / c b / c = (a b) / c
theorem max_div_div_right {α : Type u_2} [LinearOrderedSemifield α] {c : α} (hc : 0 c) (a b : α) :
a / c b / c = (a b) / c
theorem one_div_strictAntiOn {α : Type u_2} [LinearOrderedSemifield α] :
StrictAntiOn (fun (x : α) => 1 / x) (Set.Ioi 0)
theorem one_div_pow_le_one_div_pow_of_le {α : Type u_2} [LinearOrderedSemifield α] {a : α} (a1 : 1 a) {m n : } (mn : m n) :
1 / a ^ n 1 / a ^ m
theorem one_div_pow_lt_one_div_pow_of_lt {α : Type u_2} [LinearOrderedSemifield α] {a : α} (a1 : 1 < a) {m n : } (mn : m < n) :
1 / a ^ n < 1 / a ^ m
theorem one_div_pow_anti {α : Type u_2} [LinearOrderedSemifield α] {a : α} (a1 : 1 a) :
Antitone fun (n : ) => 1 / a ^ n
theorem one_div_pow_strictAnti {α : Type u_2} [LinearOrderedSemifield α] {a : α} (a1 : 1 < a) :
StrictAnti fun (n : ) => 1 / a ^ n
theorem inv_strictAntiOn {α : Type u_2} [LinearOrderedSemifield α] :
StrictAntiOn (fun (x : α) => x⁻¹) (Set.Ioi 0)
theorem inv_pow_le_inv_pow_of_le {α : Type u_2} [LinearOrderedSemifield α] {a : α} (a1 : 1 a) {m n : } (mn : m n) :
(a ^ n)⁻¹ (a ^ m)⁻¹
theorem inv_pow_lt_inv_pow_of_lt {α : Type u_2} [LinearOrderedSemifield α] {a : α} (a1 : 1 < a) {m n : } (mn : m < n) :
(a ^ n)⁻¹ < (a ^ m)⁻¹
theorem inv_pow_anti {α : Type u_2} [LinearOrderedSemifield α] {a : α} (a1 : 1 a) :
Antitone fun (n : ) => (a ^ n)⁻¹
theorem inv_pow_strictAnti {α : Type u_2} [LinearOrderedSemifield α] {a : α} (a1 : 1 < a) :
StrictAnti fun (n : ) => (a ^ n)⁻¹
theorem le_iff_forall_one_lt_le_mul₀ {α : Type u_4} [LinearOrderedSemifield α] {a b : α} (hb : 0 b) :
a b ∀ (ε : α), 1 < εa b * ε

Results about IsGLB #

theorem IsGLB.mul_left {α : Type u_2} [LinearOrderedSemifield α] {a b : α} {s : Set α} (ha : 0 a) (hs : IsGLB s b) :
IsGLB ((fun (b : α) => a * b) '' s) (a * b)
theorem IsGLB.mul_right {α : Type u_2} [LinearOrderedSemifield α] {a b : α} {s : Set α} (ha : 0 a) (hs : IsGLB s b) :
IsGLB ((fun (b : α) => b * a) '' s) (b * a)

Lemmas about pos, nonneg, nonpos, neg #

theorem div_pos_iff {α : Type u_2} [LinearOrderedField α] {a b : α} :
0 < a / b 0 < a 0 < b a < 0 b < 0
theorem div_neg_iff {α : Type u_2} [LinearOrderedField α] {a b : α} :
a / b < 0 0 < a b < 0 a < 0 0 < b
theorem div_nonneg_iff {α : Type u_2} [LinearOrderedField α] {a b : α} :
0 a / b 0 a 0 b a 0 b 0
theorem div_nonpos_iff {α : Type u_2} [LinearOrderedField α] {a b : α} :
a / b 0 0 a b 0 a 0 0 b
theorem div_nonneg_of_nonpos {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a 0) (hb : b 0) :
0 a / b
theorem div_pos_of_neg_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
0 < a / b
theorem div_neg_of_neg_of_pos {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : 0 < b) :
a / b < 0
theorem div_neg_of_pos_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : 0 < a) (hb : b < 0) :
a / b < 0

Relating one division with another term #

theorem div_le_iff_of_neg {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) :
b / c a a * c b
theorem div_le_iff_of_neg' {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) :
b / c a c * a b
theorem le_div_iff_of_neg {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) :
a b / c b a * c
theorem le_div_iff_of_neg' {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) :
a b / c b c * a
theorem div_lt_iff_of_neg {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) :
b / c < a a * c < b
theorem div_lt_iff_of_neg' {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) :
b / c < a c * a < b
theorem lt_div_iff_of_neg {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) :
a < b / c b < a * c
theorem lt_div_iff_of_neg' {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) :
a < b / c b < c * a
theorem div_le_one_of_ge {α : Type u_2} [LinearOrderedField α] {a b : α} (h : b a) (hb : b 0) :
a / b 1

Bi-implications of inequalities using inversions #

theorem inv_le_inv_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
theorem inv_le_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
theorem le_inv_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
theorem inv_lt_inv_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
a⁻¹ < b⁻¹ b < a
theorem inv_lt_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
a⁻¹ < b b⁻¹ < a
theorem lt_inv_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
a < b⁻¹ b < a⁻¹

Monotonicity results involving inversion #

theorem sub_inv_antitoneOn_Ioi {α : Type u_2} [LinearOrderedField α] {c : α} :
AntitoneOn (fun (x : α) => (x - c)⁻¹) (Set.Ioi c)
theorem sub_inv_antitoneOn_Iio {α : Type u_2} [LinearOrderedField α] {c : α} :
AntitoneOn (fun (x : α) => (x - c)⁻¹) (Set.Iio c)
theorem sub_inv_antitoneOn_Icc_right {α : Type u_2} [LinearOrderedField α] {a b c : α} (ha : c < a) :
AntitoneOn (fun (x : α) => (x - c)⁻¹) (Set.Icc a b)
theorem sub_inv_antitoneOn_Icc_left {α : Type u_2} [LinearOrderedField α] {a b c : α} (ha : b < c) :
AntitoneOn (fun (x : α) => (x - c)⁻¹) (Set.Icc a b)
theorem inv_antitoneOn_Ioi {α : Type u_2} [LinearOrderedField α] :
AntitoneOn (fun (x : α) => x⁻¹) (Set.Ioi 0)
theorem inv_antitoneOn_Iio {α : Type u_2} [LinearOrderedField α] :
AntitoneOn (fun (x : α) => x⁻¹) (Set.Iio 0)
theorem inv_antitoneOn_Icc_right {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : 0 < a) :
AntitoneOn (fun (x : α) => x⁻¹) (Set.Icc a b)
theorem inv_antitoneOn_Icc_left {α : Type u_2} [LinearOrderedField α] {a b : α} (hb : b < 0) :
AntitoneOn (fun (x : α) => x⁻¹) (Set.Icc a b)

Relating two divisions #

theorem div_le_div_of_nonpos_of_le {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c 0) (h : b a) :
a / c b / c
theorem div_lt_div_of_neg_of_lt {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) (h : b < a) :
a / c < b / c
theorem div_le_div_right_of_neg {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) :
a / c b / c b a
theorem div_lt_div_right_of_neg {α : Type u_2} [LinearOrderedField α] {a b c : α} (hc : c < 0) :
a / c < b / c b < a

Relating one division and involving 1 #

theorem one_le_div_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (hb : b < 0) :
1 a / b a b
theorem div_le_one_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (hb : b < 0) :
a / b 1 b a
theorem one_lt_div_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (hb : b < 0) :
1 < a / b a < b
theorem div_lt_one_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (hb : b < 0) :
a / b < 1 b < a
theorem one_div_le_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
1 / a b 1 / b a
theorem one_div_lt_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
1 / a < b 1 / b < a
theorem le_one_div_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
a 1 / b b 1 / a
theorem lt_one_div_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
a < 1 / b b < 1 / a
theorem one_lt_div_iff {α : Type u_2} [LinearOrderedField α] {a b : α} :
1 < a / b 0 < b b < a b < 0 a < b
theorem one_le_div_iff {α : Type u_2} [LinearOrderedField α] {a b : α} :
1 a / b 0 < b b a b < 0 a b
theorem div_lt_one_iff {α : Type u_2} [LinearOrderedField α] {a b : α} :
a / b < 1 0 < b a < b b = 0 b < 0 b < a
theorem div_le_one_iff {α : Type u_2} [LinearOrderedField α] {a b : α} :
a / b 1 0 < b a b b = 0 b < 0 b a

Relating two divisions, involving 1 #

theorem one_div_le_one_div_of_neg_of_le {α : Type u_2} [LinearOrderedField α] {a b : α} (hb : b < 0) (h : a b) :
1 / b 1 / a
theorem one_div_lt_one_div_of_neg_of_lt {α : Type u_2} [LinearOrderedField α] {a b : α} (hb : b < 0) (h : a < b) :
1 / b < 1 / a
theorem le_of_neg_of_one_div_le_one_div {α : Type u_2} [LinearOrderedField α] {a b : α} (hb : b < 0) (h : 1 / a 1 / b) :
b a
theorem lt_of_neg_of_one_div_lt_one_div {α : Type u_2} [LinearOrderedField α] {a b : α} (hb : b < 0) (h : 1 / a < 1 / b) :
b < a
theorem one_div_le_one_div_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
1 / a 1 / b b a

For the single implications with fewer assumptions, see one_div_lt_one_div_of_neg_of_lt and lt_of_one_div_lt_one_div

theorem one_div_lt_one_div_of_neg {α : Type u_2} [LinearOrderedField α] {a b : α} (ha : a < 0) (hb : b < 0) :
1 / a < 1 / b b < a

For the single implications with fewer assumptions, see one_div_lt_one_div_of_lt and lt_of_one_div_lt_one_div

theorem one_div_lt_neg_one {α : Type u_2} [LinearOrderedField α] {a : α} (h1 : a < 0) (h2 : -1 < a) :
1 / a < -1
theorem one_div_le_neg_one {α : Type u_2} [LinearOrderedField α] {a : α} (h1 : a < 0) (h2 : -1 a) :
1 / a -1

Results about halving #

theorem sub_self_div_two {α : Type u_2} [LinearOrderedField α] (a : α) :
a - a / 2 = a / 2
theorem div_two_sub_self {α : Type u_2} [LinearOrderedField α] (a : α) :
a / 2 - a = -(a / 2)
theorem add_sub_div_two_lt {α : Type u_2} [LinearOrderedField α] {a b : α} (h : a < b) :
a + (b - a) / 2 < b
theorem sub_one_div_inv_le_two {α : Type u_2} [LinearOrderedField α] {a : α} (a2 : 2 a) :
(1 - 1 / a)⁻¹ 2

An inequality involving 2.

Results about IsLUB #

theorem IsLUB.mul_left {α : Type u_2} [LinearOrderedField α] {a b : α} {s : Set α} (ha : 0 a) (hs : IsLUB s b) :
IsLUB ((fun (b : α) => a * b) '' s) (a * b)
theorem IsLUB.mul_right {α : Type u_2} [LinearOrderedField α] {a b : α} {s : Set α} (ha : 0 a) (hs : IsLUB s b) :
IsLUB ((fun (b : α) => b * a) '' s) (b * a)

Miscellaneous lemmas #

theorem mul_sub_mul_div_mul_neg_iff {α : Type u_2} [LinearOrderedField α] {a b c d : α} (hc : c 0) (hd : d 0) :
(a * d - b * c) / (c * d) < 0 a / c < b / d
theorem mul_sub_mul_div_mul_nonpos_iff {α : Type u_2} [LinearOrderedField α] {a b c d : α} (hc : c 0) (hd : d 0) :
(a * d - b * c) / (c * d) 0 a / c b / d
theorem div_lt_div_of_mul_sub_mul_div_neg {α : Type u_2} [LinearOrderedField α] {a b c d : α} (hc : c 0) (hd : d 0) :
(a * d - b * c) / (c * d) < 0a / c < b / d

Alias of the forward direction of mul_sub_mul_div_mul_neg_iff.

theorem mul_sub_mul_div_mul_neg {α : Type u_2} [LinearOrderedField α] {a b c d : α} (hc : c 0) (hd : d 0) :
a / c < b / d(a * d - b * c) / (c * d) < 0

Alias of the reverse direction of mul_sub_mul_div_mul_neg_iff.

theorem mul_sub_mul_div_mul_nonpos {α : Type u_2} [LinearOrderedField α] {a b c d : α} (hc : c 0) (hd : d 0) :
a / c b / d(a * d - b * c) / (c * d) 0

Alias of the reverse direction of mul_sub_mul_div_mul_nonpos_iff.

theorem div_le_div_of_mul_sub_mul_div_nonpos {α : Type u_2} [LinearOrderedField α] {a b c d : α} (hc : c 0) (hd : d 0) :
(a * d - b * c) / (c * d) 0a / c b / d

Alias of the forward direction of mul_sub_mul_div_mul_nonpos_iff.

theorem exists_add_lt_and_pos_of_lt {α : Type u_2} [LinearOrderedField α] {a b : α} (h : b < a) :
∃ (c : α), b + c < a 0 < c
theorem le_of_forall_sub_le {α : Type u_2} [LinearOrderedField α] {a b : α} (h : ε > 0, b - ε a) :
b a
theorem le_mul_of_forall_lt₀ {α : Type u_2} [LinearOrderedField α] {a b c : α} (h : a' > a, b' > b, c a' * b') :
c a * b
theorem mul_le_of_forall_lt_of_nonneg {α : Type u_2} [LinearOrderedField α] {a b c : α} (ha : 0 a) (hc : 0 c) (h : a'0, a' < ab'0, b' < ba' * b' c) :
a * b c
theorem mul_self_inj_of_nonneg {α : Type u_2} [LinearOrderedField α] {a b : α} (a0 : 0 a) (b0 : 0 b) :
a * a = b * b a = b
theorem min_div_div_right_of_nonpos {α : Type u_2} [LinearOrderedField α] {c : α} (hc : c 0) (a b : α) :
a / c b / c = (a b) / c
theorem max_div_div_right_of_nonpos {α : Type u_2} [LinearOrderedField α] {c : α} (hc : c 0) (a b : α) :
a / c b / c = (a b) / c
theorem abs_inv {α : Type u_2} [LinearOrderedField α] (a : α) :
|a⁻¹| = |a|⁻¹
theorem abs_div {α : Type u_2} [LinearOrderedField α] (a b : α) :
|a / b| = |a| / |b|
theorem abs_one_div {α : Type u_2} [LinearOrderedField α] (a : α) :
|1 / a| = 1 / |a|

The positivity extension which identifies expressions of the form a / b, such that positivity successfully recognises both a and b.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The positivity extension which identifies expressions of the form a⁻¹, such that positivity successfully recognises a.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The positivity extension which identifies expressions of the form a ^ (0:ℤ).

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For