HepLean Documentation

Mathlib.Algebra.Order.Field.Pointwise

Pointwise operations on ordered algebraic objects #

This file contains lemmas about the effect of pointwise operations on sets with an order structure.

theorem LinearOrderedField.smul_Ioo {K : Type u_2} [LinearOrderedField K] {a : K} {b : K} {r : K} (hr : 0 < r) :
r Set.Ioo a b = Set.Ioo (r a) (r b)
theorem LinearOrderedField.smul_Icc {K : Type u_2} [LinearOrderedField K] {a : K} {b : K} {r : K} (hr : 0 < r) :
r Set.Icc a b = Set.Icc (r a) (r b)
theorem LinearOrderedField.smul_Ico {K : Type u_2} [LinearOrderedField K] {a : K} {b : K} {r : K} (hr : 0 < r) :
r Set.Ico a b = Set.Ico (r a) (r b)
theorem LinearOrderedField.smul_Ioc {K : Type u_2} [LinearOrderedField K] {a : K} {b : K} {r : K} (hr : 0 < r) :
r Set.Ioc a b = Set.Ioc (r a) (r b)
theorem LinearOrderedField.smul_Ioi {K : Type u_2} [LinearOrderedField K] {a : K} {r : K} (hr : 0 < r) :
r Set.Ioi a = Set.Ioi (r a)
theorem LinearOrderedField.smul_Iio {K : Type u_2} [LinearOrderedField K] {a : K} {r : K} (hr : 0 < r) :
r Set.Iio a = Set.Iio (r a)
theorem LinearOrderedField.smul_Ici {K : Type u_2} [LinearOrderedField K] {a : K} {r : K} (hr : 0 < r) :
r Set.Ici a = Set.Ici (r a)
theorem LinearOrderedField.smul_Iic {K : Type u_2} [LinearOrderedField K] {a : K} {r : K} (hr : 0 < r) :
r Set.Iic a = Set.Iic (r a)