The units of an ordered commutative monoid form an ordered commutative group #
The units of an ordered commutative additive monoid form an ordered commutative additive group.
Equations
- AddUnits.orderedAddCommGroup = OrderedAddCommGroup.mk ⋯
The units of an ordered commutative monoid form an ordered commutative group.
Equations
- Units.orderedCommGroup = OrderedCommGroup.mk ⋯
theorem
AddUnits.instLinearOrderedAddCommGroup.proof_2
{α : Type u_1}
[LinearOrderedAddCommMonoid α]
(a : AddUnits α)
(b : AddUnits α)
:
theorem
AddUnits.instLinearOrderedAddCommGroup.proof_5
{α : Type u_1}
[LinearOrderedAddCommMonoid α]
(a : AddUnits α)
(b : AddUnits α)
:
compare a b = compareOfLessAndEq a b
The units of a linearly ordered commutative additive monoid form a linearly ordered commutative additive group.
Equations
- AddUnits.instLinearOrderedAddCommGroup = LinearOrderedAddCommGroup.mk ⋯ LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT ⋯ ⋯ ⋯
theorem
AddUnits.instLinearOrderedAddCommGroup.proof_3
{α : Type u_1}
[LinearOrderedAddCommMonoid α]
(a : AddUnits α)
(b : AddUnits α)
:
theorem
AddUnits.instLinearOrderedAddCommGroup.proof_4
{α : Type u_1}
[LinearOrderedAddCommMonoid α]
(a : AddUnits α)
(b : AddUnits α)
:
The units of a linearly ordered commutative monoid form a linearly ordered commutative group.
Equations
- Units.instLinearOrderedCommGroup = LinearOrderedCommGroup.mk ⋯ LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT ⋯ ⋯ ⋯