HepLean Documentation

Mathlib.Algebra.Order.Group.Units

The units of an ordered commutative monoid form an ordered commutative group #

The units of an ordered commutative additive monoid form an ordered commutative additive group.

Equations
theorem AddUnits.orderedAddCommGroup.proof_1 {α : Type u_1} [OrderedAddCommMonoid α] :
∀ (x x_1 : AddUnits α), x x_1∀ (x_2 : AddUnits α), x_2 + x x_2 + x_1

The units of an ordered commutative monoid form an ordered commutative group.

Equations

The units of a linearly ordered commutative additive monoid form a linearly ordered commutative additive group.

Equations
  • AddUnits.instLinearOrderedAddCommGroup = LinearOrderedAddCommGroup.mk LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT
theorem AddUnits.instLinearOrderedAddCommGroup.proof_3 {α : Type u_1} [LinearOrderedAddCommMonoid α] (a : AddUnits α) (b : AddUnits α) :
min a b = if a b then a else b
theorem AddUnits.instLinearOrderedAddCommGroup.proof_4 {α : Type u_1} [LinearOrderedAddCommMonoid α] (a : AddUnits α) (b : AddUnits α) :
max a b = if a b then b else a
theorem AddUnits.instLinearOrderedAddCommGroup.proof_1 {α : Type u_1} [LinearOrderedAddCommMonoid α] (a : AddUnits α) (b : AddUnits α) :
a b∀ (c : AddUnits α), c + a c + b

The units of a linearly ordered commutative monoid form a linearly ordered commutative group.

Equations
  • Units.instLinearOrderedCommGroup = LinearOrderedCommGroup.mk LinearOrder.decidableLE LinearOrder.decidableEq LinearOrder.decidableLT