HepLean Documentation

Mathlib.Algebra.Order.GroupWithZero.Synonym

Group with zero structure on the order type synonyms #

Transfer algebraic instances from α to αᵒᵈ and Lex α.

Order dual #

Equations
  • instMulZeroClassOrderDual = h
Equations
  • instMulZeroOneClassOrderDual = h
instance instNoZeroDivisorsOrderDual {α : Type u_1} [Mul α] [Zero α] [h : NoZeroDivisors α] :
Equations
  • = h
Equations
  • instSemigroupWithZeroOrderDual = h
Equations
  • instMonoidWithZeroOrderDual = h
Equations
  • instCancelMonoidWithZeroOrderDual = h
Equations
  • instCommMonoidWithZeroOrderDual = h
Equations
  • instCancelCommMonoidWithZeroOrderDual = h
Equations
  • instGroupWithZeroOrderDual = h
Equations
  • instCommGroupWithZeroOrderDual = h

Lexicographic order #

instance instMulZeroClassLex {α : Type u_1} [h : MulZeroClass α] :
Equations
  • instMulZeroClassLex = h
Equations
  • instMulZeroOneClassLex = h
instance instNoZeroDivisorsLex {α : Type u_1} [Mul α] [Zero α] [h : NoZeroDivisors α] :
Equations
  • = h
Equations
  • instSemigroupWithZeroLex = h
instance instMonoidWithZeroLex {α : Type u_1} [h : MonoidWithZero α] :
Equations
  • instMonoidWithZeroLex = h
Equations
  • instCancelMonoidWithZeroLex = h
Equations
  • instCommMonoidWithZeroLex = h
Equations
  • instCancelCommMonoidWithZeroLex = h
instance instGroupWithZeroLex {α : Type u_1} [h : GroupWithZero α] :
Equations
  • instGroupWithZeroLex = h
Equations
  • instCommGroupWithZeroLex = h