HepLean Documentation

Mathlib.Algebra.Order.Module.Pointwise

Bounds on scalar multiplication of set #

This file proves order properties of pointwise operations of sets.

theorem smul_lowerBounds_subset_lowerBounds_smul_of_nonneg {α : Type u_1} {β : Type u_2} [SMul α β] [Preorder α] [Preorder β] [Zero α] [PosSMulMono α β] {a : α} {s : Set β} (ha : 0 a) :
theorem smul_upperBounds_subset_upperBounds_smul_of_nonneg {α : Type u_1} {β : Type u_2} [SMul α β] [Preorder α] [Preorder β] [Zero α] [PosSMulMono α β] {a : α} {s : Set β} (ha : 0 a) :
theorem BddBelow.smul_of_nonneg {α : Type u_1} {β : Type u_2} [SMul α β] [Preorder α] [Preorder β] [Zero α] [PosSMulMono α β] {a : α} {s : Set β} (hs : BddBelow s) (ha : 0 a) :
theorem BddAbove.smul_of_nonneg {α : Type u_1} {β : Type u_2} [SMul α β] [Preorder α] [Preorder β] [Zero α] [PosSMulMono α β] {a : α} {s : Set β} (hs : BddAbove s) (ha : 0 a) :
@[simp]
theorem lowerBounds_smul_of_pos {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] [GroupWithZero α] [Zero β] [MulActionWithZero α β] [PosSMulMono α β] [PosSMulReflectLE α β] {s : Set β} {a : α} (ha : 0 < a) :
@[simp]
theorem upperBounds_smul_of_pos {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] [GroupWithZero α] [Zero β] [MulActionWithZero α β] [PosSMulMono α β] [PosSMulReflectLE α β] {s : Set β} {a : α} (ha : 0 < a) :
@[simp]
theorem bddBelow_smul_iff_of_pos {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] [GroupWithZero α] [Zero β] [MulActionWithZero α β] [PosSMulMono α β] [PosSMulReflectLE α β] {s : Set β} {a : α} (ha : 0 < a) :
@[simp]
theorem bddAbove_smul_iff_of_pos {α : Type u_1} {β : Type u_2} [Preorder α] [Preorder β] [GroupWithZero α] [Zero β] [MulActionWithZero α β] [PosSMulMono α β] [PosSMulReflectLE α β] {s : Set β} {a : α} (ha : 0 < a) :
theorem smul_lowerBounds_subset_upperBounds_smul {α : Type u_1} {β : Type u_2} [OrderedRing α] [OrderedAddCommGroup β] [Module α β] [PosSMulMono α β] {s : Set β} {a : α} (ha : a 0) :
theorem smul_upperBounds_subset_lowerBounds_smul {α : Type u_1} {β : Type u_2} [OrderedRing α] [OrderedAddCommGroup β] [Module α β] [PosSMulMono α β] {s : Set β} {a : α} (ha : a 0) :
theorem BddBelow.smul_of_nonpos {α : Type u_1} {β : Type u_2} [OrderedRing α] [OrderedAddCommGroup β] [Module α β] [PosSMulMono α β] {s : Set β} {a : α} (ha : a 0) (hs : BddBelow s) :
theorem BddAbove.smul_of_nonpos {α : Type u_1} {β : Type u_2} [OrderedRing α] [OrderedAddCommGroup β] [Module α β] [PosSMulMono α β] {s : Set β} {a : α} (ha : a 0) (hs : BddAbove s) :
@[simp]
theorem lowerBounds_smul_of_neg {α : Type u_1} {β : Type u_2} [LinearOrderedField α] [OrderedAddCommGroup β] [Module α β] [PosSMulMono α β] {s : Set β} {a : α} (ha : a < 0) :
@[simp]
theorem upperBounds_smul_of_neg {α : Type u_1} {β : Type u_2} [LinearOrderedField α] [OrderedAddCommGroup β] [Module α β] [PosSMulMono α β] {s : Set β} {a : α} (ha : a < 0) :
@[simp]
theorem bddBelow_smul_iff_of_neg {α : Type u_1} {β : Type u_2} [LinearOrderedField α] [OrderedAddCommGroup β] [Module α β] [PosSMulMono α β] {s : Set β} {a : α} (ha : a < 0) :
@[simp]
theorem bddAbove_smul_iff_of_neg {α : Type u_1} {β : Type u_2} [LinearOrderedField α] [OrderedAddCommGroup β] [Module α β] [PosSMulMono α β] {s : Set β} {a : α} (ha : a < 0) :