HepLean Documentation

Mathlib.Algebra.Order.Nonneg.Floor

Nonnegative elements are archimedean #

This file defines instances and prove some properties about the nonnegative elements {x : α // 0 ≤ x} of an arbitrary type α.

This is used to derive algebraic structures on ℝ≥0 and ℚ≥0 automatically.

Main declarations #

instance Nonneg.floorSemiring {α : Type u_1} [OrderedSemiring α] [FloorSemiring α] :
FloorSemiring { r : α // 0 r }
Equations
  • Nonneg.floorSemiring = { floor := fun (a : { r : α // 0 r }) => a⌋₊, ceil := fun (a : { r : α // 0 r }) => a⌉₊, floor_of_neg := , gc_floor := , gc_ceil := }
theorem Nonneg.nat_floor_coe {α : Type u_1} [OrderedSemiring α] [FloorSemiring α] (a : { r : α // 0 r }) :
theorem Nonneg.nat_ceil_coe {α : Type u_1} [OrderedSemiring α] [FloorSemiring α] (a : { r : α // 0 r }) :