HepLean Documentation

Mathlib.Algebra.Polynomial.Degree.Monomial

Degree of univariate monomials #

theorem Polynomial.natDegree_le_pred {R : Type u} {n : } [Semiring R] {p : Polynomial R} (hf : p.natDegree n) (hn : p.coeff n = 0) :
p.natDegree n - 1
theorem Polynomial.monomial_natDegree_leadingCoeff_eq_self {R : Type u} [Semiring R] {p : Polynomial R} (h : p.support.card 1) :
(Polynomial.monomial p.natDegree) p.leadingCoeff = p
theorem Polynomial.C_mul_X_pow_eq_self {R : Type u} [Semiring R] {p : Polynomial R} (h : p.support.card 1) :
Polynomial.C p.leadingCoeff * Polynomial.X ^ p.natDegree = p