HepLean Documentation

Mathlib.Algebra.Polynomial.Eval.Defs

Evaluating a polynomial #

Main definitions #

We also provide the following bundled versions:

We include results on applying the definitions to C, X and ring operations.

@[irreducible]
def Polynomial.eval₂ {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (p : Polynomial R) :
S

Evaluate a polynomial p given a ring hom f from the scalar ring to the target and a value x for the variable in the target

Equations
Instances For
    theorem Polynomial.eval₂_def {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (p : Polynomial R) :
    Polynomial.eval₂ f x p = p.sum fun (e : ) (a : R) => f a * x ^ e
    theorem Polynomial.eval₂_eq_sum {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] {f : R →+* S} {x : S} :
    Polynomial.eval₂ f x p = p.sum fun (e : ) (a : R) => f a * x ^ e
    theorem Polynomial.eval₂_congr {R : Type u_1} {S : Type u_2} [Semiring R] [Semiring S] {f g : R →+* S} {s t : S} {φ ψ : Polynomial R} :
    f = gs = tφ = ψPolynomial.eval₂ f s φ = Polynomial.eval₂ g t ψ
    @[simp]
    theorem Polynomial.eval₂_zero {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) :
    @[simp]
    theorem Polynomial.eval₂_C {R : Type u} {S : Type v} {a : R} [Semiring R] [Semiring S] (f : R →+* S) (x : S) :
    Polynomial.eval₂ f x (Polynomial.C a) = f a
    @[simp]
    theorem Polynomial.eval₂_X {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) :
    Polynomial.eval₂ f x Polynomial.X = x
    @[simp]
    theorem Polynomial.eval₂_monomial {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) {n : } {r : R} :
    @[simp]
    theorem Polynomial.eval₂_X_pow {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) {n : } :
    Polynomial.eval₂ f x (Polynomial.X ^ n) = x ^ n
    @[simp]
    theorem Polynomial.eval₂_add {R : Type u} {S : Type v} [Semiring R] {p q : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
    @[simp]
    theorem Polynomial.eval₂_one {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) :
    def Polynomial.eval₂AddMonoidHom {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) :

    eval₂AddMonoidHom (f : R →+* S) (x : S) is the AddMonoidHom from R[X] to S obtained by evaluating the pushforward of p along f at x.

    Equations
    Instances For
      @[simp]
      @[simp]
      theorem Polynomial.eval₂_natCast {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (n : ) :
      Polynomial.eval₂ f x n = n
      @[deprecated Polynomial.eval₂_natCast]
      theorem Polynomial.eval₂_nat_cast {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (n : ) :
      Polynomial.eval₂ f x n = n

      Alias of Polynomial.eval₂_natCast.

      @[simp]
      theorem Polynomial.eval₂_ofNat {R : Type u} [Semiring R] {S : Type u_1} [Semiring S] (n : ) [n.AtLeastTwo] (f : R →+* S) (a : S) :
      theorem Polynomial.eval₂_sum {R : Type u} {S : Type v} {T : Type w} [Semiring R] [Semiring S] (f : R →+* S) [Semiring T] (p : Polynomial T) (g : TPolynomial R) (x : S) :
      Polynomial.eval₂ f x (p.sum g) = p.sum fun (n : ) (a : T) => Polynomial.eval₂ f x (g n a)
      theorem Polynomial.eval₂_list_sum {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (l : List (Polynomial R)) (x : S) :
      theorem Polynomial.eval₂_multiset_sum {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (s : Multiset (Polynomial R)) (x : S) :
      theorem Polynomial.eval₂_finset_sum {R : Type u} {S : Type v} {ι : Type y} [Semiring R] [Semiring S] (f : R →+* S) (s : Finset ι) (g : ιPolynomial R) (x : S) :
      Polynomial.eval₂ f x (∑ is, g i) = is, Polynomial.eval₂ f x (g i)
      theorem Polynomial.eval₂_ofFinsupp {R : Type u} {S : Type v} [Semiring R] [Semiring S] {f : R →+* S} {x : S} {p : AddMonoidAlgebra R } :
      Polynomial.eval₂ f x { toFinsupp := p } = (AddMonoidAlgebra.liftNC f ((powersHom S) x)) p
      theorem Polynomial.eval₂_mul_noncomm {R : Type u} {S : Type v} [Semiring R] {p q : Polynomial R} [Semiring S] (f : R →+* S) (x : S) (hf : ∀ (k : ), Commute (f (q.coeff k)) x) :
      @[simp]
      theorem Polynomial.eval₂_mul_X {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
      Polynomial.eval₂ f x (p * Polynomial.X) = Polynomial.eval₂ f x p * x
      @[simp]
      theorem Polynomial.eval₂_X_mul {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
      Polynomial.eval₂ f x (Polynomial.X * p) = Polynomial.eval₂ f x p * x
      theorem Polynomial.eval₂_mul_C' {R : Type u} {S : Type v} {a : R} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) (h : Commute (f a) x) :
      Polynomial.eval₂ f x (p * Polynomial.C a) = Polynomial.eval₂ f x p * f a
      theorem Polynomial.eval₂_list_prod_noncomm {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (ps : List (Polynomial R)) (hf : pps, ∀ (k : ), Commute (f (p.coeff k)) x) :
      Polynomial.eval₂ f x ps.prod = (List.map (Polynomial.eval₂ f x) ps).prod
      def Polynomial.eval₂RingHom' {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (hf : ∀ (a : R), Commute (f a) x) :

      eval₂ as a RingHom for noncommutative rings

      Equations
      Instances For
        @[simp]
        theorem Polynomial.eval₂RingHom'_apply {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (x : S) (hf : ∀ (a : R), Commute (f a) x) (p : Polynomial R) :

        We next prove that eval₂ is multiplicative as long as target ring is commutative (even if the source ring is not).

        @[simp]
        theorem Polynomial.eval₂_mul {R : Type u} {S : Type v} [Semiring R] {p q : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) :
        theorem Polynomial.eval₂_mul_eq_zero_of_left {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) (q : Polynomial R) (hp : Polynomial.eval₂ f x p = 0) :
        Polynomial.eval₂ f x (p * q) = 0
        theorem Polynomial.eval₂_mul_eq_zero_of_right {R : Type u} {S : Type v} [Semiring R] {q : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) (p : Polynomial R) (hq : Polynomial.eval₂ f x q = 0) :
        Polynomial.eval₂ f x (p * q) = 0
        def Polynomial.eval₂RingHom {R : Type u} {S : Type v} [Semiring R] [CommSemiring S] (f : R →+* S) (x : S) :

        eval₂ as a RingHom

        Equations
        Instances For
          @[simp]
          theorem Polynomial.coe_eval₂RingHom {R : Type u} {S : Type v} [Semiring R] [CommSemiring S] (f : R →+* S) (x : S) :
          theorem Polynomial.eval₂_pow {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) (n : ) :
          theorem Polynomial.eval₂_dvd {R : Type u} {S : Type v} [Semiring R] {p q : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) :
          theorem Polynomial.eval₂_eq_zero_of_dvd_of_eval₂_eq_zero {R : Type u} {S : Type v} [Semiring R] {p q : Polynomial R} [CommSemiring S] (f : R →+* S) (x : S) (h : p q) (h0 : Polynomial.eval₂ f x p = 0) :
          theorem Polynomial.eval₂_list_prod {R : Type u} {S : Type v} [Semiring R] [CommSemiring S] (f : R →+* S) (l : List (Polynomial R)) (x : S) :
          def Polynomial.eval {R : Type u} [Semiring R] :
          RPolynomial RR

          eval x p is the evaluation of the polynomial p at x

          Equations
          Instances For
            theorem Polynomial.eval_eq_sum {R : Type u} [Semiring R] {p : Polynomial R} {x : R} :
            Polynomial.eval x p = p.sum fun (e : ) (a : R) => a * x ^ e
            @[simp]
            theorem Polynomial.eval₂_at_apply {R : Type u} [Semiring R] {p : Polynomial R} {S : Type u_1} [Semiring S] (f : R →+* S) (r : R) :
            @[simp]
            theorem Polynomial.eval₂_at_one {R : Type u} [Semiring R] {p : Polynomial R} {S : Type u_1} [Semiring S] (f : R →+* S) :
            @[simp]
            theorem Polynomial.eval₂_at_natCast {R : Type u} [Semiring R] {p : Polynomial R} {S : Type u_1} [Semiring S] (f : R →+* S) (n : ) :
            Polynomial.eval₂ f (↑n) p = f (Polynomial.eval (↑n) p)
            @[deprecated Polynomial.eval₂_at_natCast]
            theorem Polynomial.eval₂_at_nat_cast {R : Type u} [Semiring R] {p : Polynomial R} {S : Type u_1} [Semiring S] (f : R →+* S) (n : ) :
            Polynomial.eval₂ f (↑n) p = f (Polynomial.eval (↑n) p)

            Alias of Polynomial.eval₂_at_natCast.

            @[simp]
            theorem Polynomial.eval₂_at_ofNat {R : Type u} [Semiring R] {p : Polynomial R} {S : Type u_1} [Semiring S] (f : R →+* S) (n : ) [n.AtLeastTwo] :
            @[simp]
            theorem Polynomial.eval_C {R : Type u} {a : R} [Semiring R] {x : R} :
            Polynomial.eval x (Polynomial.C a) = a
            @[simp]
            theorem Polynomial.eval_natCast {R : Type u} [Semiring R] {x : R} {n : } :
            Polynomial.eval x n = n
            @[deprecated Polynomial.eval_natCast]
            theorem Polynomial.eval_nat_cast {R : Type u} [Semiring R] {x : R} {n : } :
            Polynomial.eval x n = n

            Alias of Polynomial.eval_natCast.

            @[simp]
            theorem Polynomial.eval_ofNat {R : Type u} [Semiring R] (n : ) [n.AtLeastTwo] (a : R) :
            @[simp]
            theorem Polynomial.eval_X {R : Type u} [Semiring R] {x : R} :
            Polynomial.eval x Polynomial.X = x
            @[simp]
            theorem Polynomial.eval_monomial {R : Type u} [Semiring R] {x : R} {n : } {a : R} :
            @[simp]
            theorem Polynomial.eval_zero {R : Type u} [Semiring R] {x : R} :
            @[simp]
            theorem Polynomial.eval_add {R : Type u} [Semiring R] {p q : Polynomial R} {x : R} :
            @[simp]
            theorem Polynomial.eval_one {R : Type u} [Semiring R] {x : R} :
            @[simp]
            theorem Polynomial.eval_C_mul {R : Type u} {a : R} [Semiring R] {p : Polynomial R} {x : R} :
            Polynomial.eval x (Polynomial.C a * p) = a * Polynomial.eval x p
            @[simp]
            theorem Polynomial.eval_natCast_mul {R : Type u} [Semiring R] {p : Polynomial R} {x : R} {n : } :
            Polynomial.eval x (n * p) = n * Polynomial.eval x p
            @[deprecated Polynomial.eval_natCast_mul]
            theorem Polynomial.eval_nat_cast_mul {R : Type u} [Semiring R] {p : Polynomial R} {x : R} {n : } :
            Polynomial.eval x (n * p) = n * Polynomial.eval x p

            Alias of Polynomial.eval_natCast_mul.

            @[simp]
            theorem Polynomial.eval_mul_X {R : Type u} [Semiring R] {p : Polynomial R} {x : R} :
            Polynomial.eval x (p * Polynomial.X) = Polynomial.eval x p * x
            @[simp]
            theorem Polynomial.eval_mul_X_pow {R : Type u} [Semiring R] {p : Polynomial R} {x : R} {k : } :
            Polynomial.eval x (p * Polynomial.X ^ k) = Polynomial.eval x p * x ^ k
            theorem Polynomial.eval_sum {R : Type u} [Semiring R] (p : Polynomial R) (f : RPolynomial R) (x : R) :
            Polynomial.eval x (p.sum f) = p.sum fun (n : ) (a : R) => Polynomial.eval x (f n a)
            theorem Polynomial.eval_finset_sum {R : Type u} {ι : Type y} [Semiring R] (s : Finset ι) (g : ιPolynomial R) (x : R) :
            Polynomial.eval x (∑ is, g i) = is, Polynomial.eval x (g i)
            def Polynomial.IsRoot {R : Type u} [Semiring R] (p : Polynomial R) (a : R) :

            IsRoot p x implies x is a root of p. The evaluation of p at x is zero

            Equations
            Instances For
              instance Polynomial.IsRoot.decidable {R : Type u} {a : R} [Semiring R] {p : Polynomial R} [DecidableEq R] :
              Decidable (p.IsRoot a)
              Equations
              • Polynomial.IsRoot.decidable = id inferInstance
              @[simp]
              theorem Polynomial.IsRoot.def {R : Type u} {a : R} [Semiring R] {p : Polynomial R} :
              p.IsRoot a Polynomial.eval a p = 0
              theorem Polynomial.IsRoot.eq_zero {R : Type u} [Semiring R] {p : Polynomial R} {x : R} (h : p.IsRoot x) :
              theorem Polynomial.IsRoot.dvd {R : Type u_1} [CommSemiring R] {p q : Polynomial R} {x : R} (h : p.IsRoot x) (hpq : p q) :
              q.IsRoot x
              theorem Polynomial.not_isRoot_C {R : Type u} [Semiring R] (r a : R) (hr : r 0) :
              ¬(Polynomial.C r).IsRoot a
              def Polynomial.comp {R : Type u} [Semiring R] (p q : Polynomial R) :

              The composition of polynomials as a polynomial.

              Equations
              Instances For
                theorem Polynomial.comp_eq_sum_left {R : Type u} [Semiring R] {p q : Polynomial R} :
                p.comp q = p.sum fun (e : ) (a : R) => Polynomial.C a * q ^ e
                @[simp]
                theorem Polynomial.comp_X {R : Type u} [Semiring R] {p : Polynomial R} :
                p.comp Polynomial.X = p
                @[simp]
                theorem Polynomial.X_comp {R : Type u} [Semiring R] {p : Polynomial R} :
                Polynomial.X.comp p = p
                @[simp]
                theorem Polynomial.comp_C {R : Type u} {a : R} [Semiring R] {p : Polynomial R} :
                p.comp (Polynomial.C a) = Polynomial.C (Polynomial.eval a p)
                @[simp]
                theorem Polynomial.C_comp {R : Type u} {a : R} [Semiring R] {p : Polynomial R} :
                (Polynomial.C a).comp p = Polynomial.C a
                @[simp]
                theorem Polynomial.natCast_comp {R : Type u} [Semiring R] {p : Polynomial R} {n : } :
                (↑n).comp p = n
                @[deprecated Polynomial.natCast_comp]
                theorem Polynomial.nat_cast_comp {R : Type u} [Semiring R] {p : Polynomial R} {n : } :
                (↑n).comp p = n

                Alias of Polynomial.natCast_comp.

                @[simp]
                theorem Polynomial.ofNat_comp {R : Type u} [Semiring R] {p : Polynomial R} (n : ) [n.AtLeastTwo] :
                (OfNat.ofNat n).comp p = n
                @[simp]
                theorem Polynomial.comp_zero {R : Type u} [Semiring R] {p : Polynomial R} :
                p.comp 0 = Polynomial.C (Polynomial.eval 0 p)
                @[simp]
                theorem Polynomial.zero_comp {R : Type u} [Semiring R] {p : Polynomial R} :
                @[simp]
                theorem Polynomial.comp_one {R : Type u} [Semiring R] {p : Polynomial R} :
                p.comp 1 = Polynomial.C (Polynomial.eval 1 p)
                @[simp]
                theorem Polynomial.one_comp {R : Type u} [Semiring R] {p : Polynomial R} :
                @[simp]
                theorem Polynomial.add_comp {R : Type u} [Semiring R] {p q r : Polynomial R} :
                (p + q).comp r = p.comp r + q.comp r
                @[simp]
                theorem Polynomial.monomial_comp {R : Type u} {a : R} [Semiring R] {p : Polynomial R} (n : ) :
                ((Polynomial.monomial n) a).comp p = Polynomial.C a * p ^ n
                @[simp]
                theorem Polynomial.mul_X_comp {R : Type u} [Semiring R] {p r : Polynomial R} :
                (p * Polynomial.X).comp r = p.comp r * r
                @[simp]
                theorem Polynomial.X_pow_comp {R : Type u} [Semiring R] {p : Polynomial R} {k : } :
                (Polynomial.X ^ k).comp p = p ^ k
                @[simp]
                theorem Polynomial.mul_X_pow_comp {R : Type u} [Semiring R] {p r : Polynomial R} {k : } :
                (p * Polynomial.X ^ k).comp r = p.comp r * r ^ k
                @[simp]
                theorem Polynomial.C_mul_comp {R : Type u} {a : R} [Semiring R] {p r : Polynomial R} :
                (Polynomial.C a * p).comp r = Polynomial.C a * p.comp r
                @[simp]
                theorem Polynomial.natCast_mul_comp {R : Type u} [Semiring R] {p r : Polynomial R} {n : } :
                (n * p).comp r = n * p.comp r
                @[deprecated Polynomial.natCast_mul_comp]
                theorem Polynomial.nat_cast_mul_comp {R : Type u} [Semiring R] {p r : Polynomial R} {n : } :
                (n * p).comp r = n * p.comp r

                Alias of Polynomial.natCast_mul_comp.

                theorem Polynomial.mul_X_add_natCast_comp {R : Type u} [Semiring R] {p q : Polynomial R} {n : } :
                (p * (Polynomial.X + n)).comp q = p.comp q * (q + n)
                @[deprecated Polynomial.mul_X_add_natCast_comp]
                theorem Polynomial.mul_X_add_nat_cast_comp {R : Type u} [Semiring R] {p q : Polynomial R} {n : } :
                (p * (Polynomial.X + n)).comp q = p.comp q * (q + n)

                Alias of Polynomial.mul_X_add_natCast_comp.

                @[simp]
                theorem Polynomial.mul_comp {R : Type u_1} [CommSemiring R] (p q r : Polynomial R) :
                (p * q).comp r = p.comp r * q.comp r
                @[simp]
                theorem Polynomial.pow_comp {R : Type u_1} [CommSemiring R] (p q : Polynomial R) (n : ) :
                (p ^ n).comp q = p.comp q ^ n
                theorem Polynomial.comp_assoc {R : Type u_1} [CommSemiring R] (φ ψ χ : Polynomial R) :
                (φ.comp ψ).comp χ = φ.comp (ψ.comp χ)
                @[simp]
                theorem Polynomial.sum_comp {R : Type u} {ι : Type y} [Semiring R] (s : Finset ι) (p : ιPolynomial R) (q : Polynomial R) :
                (∑ is, p i).comp q = is, (p i).comp q
                def Polynomial.map {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :

                map f p maps a polynomial p across a ring hom f

                Equations
                Instances For
                  @[simp]
                  theorem Polynomial.map_C {R : Type u} {S : Type v} {a : R} [Semiring R] [Semiring S] (f : R →+* S) :
                  Polynomial.map f (Polynomial.C a) = Polynomial.C (f a)
                  @[simp]
                  theorem Polynomial.map_X {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :
                  Polynomial.map f Polynomial.X = Polynomial.X
                  @[simp]
                  theorem Polynomial.map_monomial {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) {n : } {a : R} :
                  @[simp]
                  theorem Polynomial.map_zero {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :
                  @[simp]
                  theorem Polynomial.map_add {R : Type u} {S : Type v} [Semiring R] {p q : Polynomial R} [Semiring S] (f : R →+* S) :
                  @[simp]
                  theorem Polynomial.map_one {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :
                  @[simp]
                  theorem Polynomial.map_mul {R : Type u} {S : Type v} [Semiring R] {p q : Polynomial R} [Semiring S] (f : R →+* S) :
                  def Polynomial.mapRingHom {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :

                  Polynomial.map as a RingHom.

                  Equations
                  Instances For
                    @[simp]
                    theorem Polynomial.coe_mapRingHom {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) :
                    @[simp]
                    theorem Polynomial.map_natCast {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (n : ) :
                    Polynomial.map f n = n
                    @[deprecated map_natCast]
                    theorem Polynomial.map_nat_cast {R : Type u_3} {S : Type u_4} {F : Type u_5} [NonAssocSemiring R] [NonAssocSemiring S] [FunLike F R S] [RingHomClass F R S] (f : F) (n : ) :
                    f n = n

                    Alias of map_natCast.

                    @[simp]
                    theorem Polynomial.map_ofNat {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (n : ) [n.AtLeastTwo] :
                    theorem Polynomial.map_dvd {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) {x y : Polynomial R} :
                    theorem Polynomial.mapRingHom_comp_C {R : Type u_1} {S : Type u_2} [CommRing R] [CommRing S] (f : R →+* S) :
                    (Polynomial.mapRingHom f).comp Polynomial.C = Polynomial.C.comp f
                    theorem Polynomial.eval₂_eq_eval_map {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) {x : S} :
                    theorem Polynomial.map_list_prod {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (L : List (Polynomial R)) :
                    Polynomial.map f L.prod = (List.map (Polynomial.map f) L).prod
                    @[simp]
                    theorem Polynomial.map_pow {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (n : ) :
                    theorem Polynomial.eval_map {R : Type u} {S : Type v} [Semiring R] {p : Polynomial R} [Semiring S] (f : R →+* S) (x : S) :
                    theorem Polynomial.map_sum {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) {ι : Type u_1} (g : ιPolynomial R) (s : Finset ι) :
                    Polynomial.map f (∑ is, g i) = is, Polynomial.map f (g i)
                    theorem Polynomial.map_comp {R : Type u} {S : Type v} [Semiring R] [Semiring S] (f : R →+* S) (p q : Polynomial R) :
                    Polynomial.map f (p.comp q) = (Polynomial.map f p).comp (Polynomial.map f q)
                    @[simp]
                    theorem Polynomial.eval_mul {R : Type u} [CommSemiring R] {p q : Polynomial R} {x : R} :

                    eval r, regarded as a ring homomorphism from R[X] to R.

                    Equations
                    Instances For
                      @[simp]
                      theorem Polynomial.eval_pow {R : Type u} [CommSemiring R] {p : Polynomial R} {x : R} (n : ) :
                      @[simp]
                      theorem Polynomial.eval_comp {R : Type u} [CommSemiring R] {p q : Polynomial R} {x : R} :
                      theorem Polynomial.isRoot_comp {R : Type u_1} [CommSemiring R] {p q : Polynomial R} {r : R} :
                      (p.comp q).IsRoot r p.IsRoot (Polynomial.eval r q)

                      comp p, regarded as a ring homomorphism from R[X] to itself.

                      Equations
                      Instances For
                        @[simp]
                        theorem Polynomial.coe_compRingHom {R : Type u} [CommSemiring R] (q : Polynomial R) :
                        q.compRingHom = fun (p : Polynomial R) => p.comp q
                        theorem Polynomial.coe_compRingHom_apply {R : Type u} [CommSemiring R] (p q : Polynomial R) :
                        q.compRingHom p = p.comp q
                        theorem Polynomial.root_mul_left_of_isRoot {R : Type u} {a : R} [CommSemiring R] (p : Polynomial R) {q : Polynomial R} :
                        q.IsRoot a(p * q).IsRoot a
                        theorem Polynomial.root_mul_right_of_isRoot {R : Type u} {a : R} [CommSemiring R] {p : Polynomial R} (q : Polynomial R) :
                        p.IsRoot a(p * q).IsRoot a
                        theorem Polynomial.eval₂_multiset_prod {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R →+* S) (s : Multiset (Polynomial R)) (x : S) :
                        theorem Polynomial.eval₂_finset_prod {R : Type u} {S : Type v} {ι : Type y} [CommSemiring R] [CommSemiring S] (f : R →+* S) (s : Finset ι) (g : ιPolynomial R) (x : S) :
                        Polynomial.eval₂ f x (∏ is, g i) = is, Polynomial.eval₂ f x (g i)
                        theorem Polynomial.eval_list_prod {R : Type u} [CommSemiring R] (l : List (Polynomial R)) (x : R) :

                        Polynomial evaluation commutes with List.prod

                        Polynomial evaluation commutes with Multiset.prod

                        theorem Polynomial.eval_prod {R : Type u} [CommSemiring R] {ι : Type u_1} (s : Finset ι) (p : ιPolynomial R) (x : R) :
                        Polynomial.eval x (∏ js, p j) = js, Polynomial.eval x (p j)

                        Polynomial evaluation commutes with Finset.prod

                        theorem Polynomial.list_prod_comp {R : Type u} [CommSemiring R] (l : List (Polynomial R)) (q : Polynomial R) :
                        l.prod.comp q = (List.map (fun (p : Polynomial R) => p.comp q) l).prod
                        theorem Polynomial.multiset_prod_comp {R : Type u} [CommSemiring R] (s : Multiset (Polynomial R)) (q : Polynomial R) :
                        s.prod.comp q = (Multiset.map (fun (p : Polynomial R) => p.comp q) s).prod
                        theorem Polynomial.prod_comp {R : Type u} [CommSemiring R] {ι : Type u_1} (s : Finset ι) (p : ιPolynomial R) (q : Polynomial R) :
                        (∏ js, p j).comp q = js, (p j).comp q
                        theorem Polynomial.isRoot_prod {R : Type u_2} [CommRing R] [IsDomain R] {ι : Type u_1} (s : Finset ι) (p : ιPolynomial R) (x : R) :
                        (∏ js, p j).IsRoot x is, (p i).IsRoot x
                        theorem Polynomial.eval_dvd {R : Type u} [CommSemiring R] {p q : Polynomial R} {x : R} :
                        @[simp]
                        theorem Polynomial.eval_geom_sum {R : Type u_1} [CommSemiring R] {n : } {x : R} :
                        Polynomial.eval x (∑ iFinset.range n, Polynomial.X ^ i) = iFinset.range n, x ^ i
                        theorem Polynomial.root_mul {R : Type u} {a : R} [CommSemiring R] {p q : Polynomial R} [NoZeroDivisors R] :
                        (p * q).IsRoot a p.IsRoot a q.IsRoot a
                        theorem Polynomial.root_or_root_of_root_mul {R : Type u} {a : R} [CommSemiring R] {p q : Polynomial R} [NoZeroDivisors R] (h : (p * q).IsRoot a) :
                        p.IsRoot a q.IsRoot a
                        theorem Polynomial.map_prod {R : Type u} {S : Type v} [CommSemiring R] [CommSemiring S] (f : R →+* S) {ι : Type u_1} (g : ιPolynomial R) (s : Finset ι) :
                        Polynomial.map f (∏ is, g i) = is, Polynomial.map f (g i)
                        @[simp]
                        theorem Polynomial.map_sub {R : Type u} [Ring R] {p q : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) :
                        @[simp]
                        theorem Polynomial.map_neg {R : Type u} [Ring R] {p : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) :
                        @[simp]
                        theorem Polynomial.map_intCast {R : Type u} [Ring R] {S : Type u_1} [Ring S] (f : R →+* S) (n : ) :
                        Polynomial.map f n = n
                        @[deprecated map_intCast]
                        theorem Polynomial.map_int_cast {F : Type u_1} {α : Type u_3} {β : Type u_4} [NonAssocRing α] [NonAssocRing β] [FunLike F α β] [RingHomClass F α β] (f : F) (n : ) :
                        f n = n

                        Alias of map_intCast.

                        @[simp]
                        theorem Polynomial.eval_intCast {R : Type u} [Ring R] {n : } {x : R} :
                        Polynomial.eval x n = n
                        @[deprecated Polynomial.eval_intCast]
                        theorem Polynomial.eval_int_cast {R : Type u} [Ring R] {n : } {x : R} :
                        Polynomial.eval x n = n

                        Alias of Polynomial.eval_intCast.

                        @[simp]
                        theorem Polynomial.eval₂_neg {R : Type u} [Ring R] {p : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) {x : S} :
                        @[simp]
                        theorem Polynomial.eval₂_sub {R : Type u} [Ring R] {p q : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) {x : S} :
                        @[simp]
                        theorem Polynomial.eval_neg {R : Type u} [Ring R] (p : Polynomial R) (x : R) :
                        @[simp]
                        theorem Polynomial.eval_sub {R : Type u} [Ring R] (p q : Polynomial R) (x : R) :
                        theorem Polynomial.root_X_sub_C {R : Type u} {a b : R} [Ring R] :
                        (Polynomial.X - Polynomial.C a).IsRoot b a = b
                        @[simp]
                        theorem Polynomial.neg_comp {R : Type u} [Ring R] {p q : Polynomial R} :
                        (-p).comp q = -p.comp q
                        @[simp]
                        theorem Polynomial.sub_comp {R : Type u} [Ring R] {p q r : Polynomial R} :
                        (p - q).comp r = p.comp r - q.comp r
                        @[simp]
                        theorem Polynomial.intCast_comp {R : Type u} [Ring R] {p : Polynomial R} (i : ) :
                        (↑i).comp p = i
                        @[deprecated Polynomial.intCast_comp]
                        theorem Polynomial.cast_int_comp {R : Type u} [Ring R] {p : Polynomial R} (i : ) :
                        (↑i).comp p = i

                        Alias of Polynomial.intCast_comp.

                        @[simp]
                        theorem Polynomial.eval₂_at_intCast {R : Type u} [Ring R] {p : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) (n : ) :
                        Polynomial.eval₂ f (↑n) p = f (Polynomial.eval (↑n) p)
                        @[deprecated Polynomial.eval₂_at_intCast]
                        theorem Polynomial.eval₂_at_int_cast {R : Type u} [Ring R] {p : Polynomial R} {S : Type u_1} [Ring S] (f : R →+* S) (n : ) :
                        Polynomial.eval₂ f (↑n) p = f (Polynomial.eval (↑n) p)

                        Alias of Polynomial.eval₂_at_intCast.

                        theorem Polynomial.mul_X_sub_intCast_comp {R : Type u} [Ring R] {p q : Polynomial R} {n : } :
                        (p * (Polynomial.X - n)).comp q = p.comp q * (q - n)
                        @[deprecated Polynomial.mul_X_sub_intCast_comp]
                        theorem Polynomial.mul_X_sub_int_cast_comp {R : Type u} [Ring R] {p q : Polynomial R} {n : } :
                        (p * (Polynomial.X - n)).comp q = p.comp q * (q - n)

                        Alias of Polynomial.mul_X_sub_intCast_comp.