HepLean Documentation

Mathlib.Analysis.Analytic.Within

Properties of analyticity restricted to a set #

From Mathlib.Analysis.Analytic.Basic, we have the definitions

  1. AnalyticWithinAt ๐•œ f s x means a power series at x converges to f on ๐“[insert x s] x.
  2. AnalyticOn ๐•œ f s t means โˆ€ x โˆˆ t, AnalyticWithinAt ๐•œ f s x.

This means there exists an extension of f which is analytic and agrees with f on s โˆช {x}, but f is allowed to be arbitrary elsewhere.

Here we prove basic properties of these definitions. Where convenient we assume completeness of the ambient space, which allows us to relate AnalyticWithinAt to analyticity of a local extension.

Basic properties #

theorem analyticWithinAt_of_singleton_mem {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} {x : E} (h : {x} โˆˆ nhdsWithin x s) :
AnalyticWithinAt ๐•œ f s x

AnalyticWithinAt is trivial if {x} โˆˆ ๐“[s] x

theorem analyticOn_of_locally_analyticOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (h : โˆ€ x โˆˆ s, โˆƒ (u : Set E), IsOpen u โˆง x โˆˆ u โˆง AnalyticOn ๐•œ f (s โˆฉ u)) :
AnalyticOn ๐•œ f s

If f is AnalyticOn near each point in a set, it is AnalyticOn the set

@[deprecated analyticOn_of_locally_analyticOn]
theorem analyticWithinOn_of_locally_analyticWithinOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (h : โˆ€ x โˆˆ s, โˆƒ (u : Set E), IsOpen u โˆง x โˆˆ u โˆง AnalyticOn ๐•œ f (s โˆฉ u)) :
AnalyticOn ๐•œ f s

Alias of analyticOn_of_locally_analyticOn.


If f is AnalyticOn near each point in a set, it is AnalyticOn the set

theorem IsOpen.analyticOn_iff_analyticOnNhd {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (hs : IsOpen s) :
AnalyticOn ๐•œ f s โ†” AnalyticOnNhd ๐•œ f s

On open sets, AnalyticOnNhd and AnalyticOn coincide

@[deprecated IsOpen.analyticOn_iff_analyticOnNhd]
theorem IsOpen.analyticWithinOn_iff_analyticOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : E โ†’ F} {s : Set E} (hs : IsOpen s) :
AnalyticOn ๐•œ f s โ†” AnalyticOnNhd ๐•œ f s

Alias of IsOpen.analyticOn_iff_analyticOnNhd.


On open sets, AnalyticOnNhd and AnalyticOn coincide

Equivalence to analyticity of a local extension #

We show that HasFPowerSeriesWithinOnBall, HasFPowerSeriesWithinAt, and AnalyticWithinAt are equivalent to the existence of a local extension with full analyticity. We do not yet show a result for AnalyticOn, as this requires a bit more work to show that local extensions can be stitched together.

theorem hasFPowerSeriesWithinOnBall_iff_exists_hasFPowerSeriesOnBall {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {p : FormalMultilinearSeries ๐•œ E F} {s : Set E} {x : E} {r : ENNReal} :
HasFPowerSeriesWithinOnBall f p s x r โ†” โˆƒ (g : E โ†’ F), Set.EqOn f g (insert x s โˆฉ EMetric.ball x r) โˆง HasFPowerSeriesOnBall g p x r

f has power series p at x iff some local extension of f has that series

theorem hasFPowerSeriesWithinAt_iff_exists_hasFPowerSeriesAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {p : FormalMultilinearSeries ๐•œ E F} {s : Set E} {x : E} :
HasFPowerSeriesWithinAt f p s x โ†” โˆƒ (g : E โ†’ F), f =แถ [nhdsWithin x (insert x s)] g โˆง HasFPowerSeriesAt g p x

f has power series p at x iff some local extension of f has that series

theorem analyticWithinAt_iff_exists_analyticAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {s : Set E} {x : E} :
AnalyticWithinAt ๐•œ f s x โ†” โˆƒ (g : E โ†’ F), f =แถ [nhdsWithin x (insert x s)] g โˆง AnalyticAt ๐•œ g x

f is analytic within s at x iff some local extension of f is analytic at x

theorem analyticWithinAt_iff_exists_analyticAt' {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {s : Set E} {x : E} :
AnalyticWithinAt ๐•œ f s x โ†” โˆƒ (g : E โ†’ F), f x = g x โˆง Set.EqOn f g (insert x s) โˆง AnalyticAt ๐•œ g x

f is analytic within s at x iff some local extension of f is analytic at x. In this version, we make sure that the extension coincides with f on all of insert x s.

theorem AnalyticWithinAt.exists_analyticAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedSpace ๐•œ E] [NormedAddCommGroup F] [NormedSpace ๐•œ F] [CompleteSpace F] {f : E โ†’ F} {s : Set E} {x : E} :
AnalyticWithinAt ๐•œ f s x โ†’ โˆƒ (g : E โ†’ F), f x = g x โˆง Set.EqOn f g (insert x s) โˆง AnalyticAt ๐•œ g x

Alias of the forward direction of analyticWithinAt_iff_exists_analyticAt'.


f is analytic within s at x iff some local extension of f is analytic at x. In this version, we make sure that the extension coincides with f on all of insert x s.