HepLean Documentation

Mathlib.Analysis.Calculus.Deriv.AffineMap

Derivatives of affine maps #

In this file we prove formulas for one-dimensional derivatives of affine maps f : ๐•œ โ†’แตƒ[๐•œ] E. We also specialise some of these results to AffineMap.lineMap because it is useful to transfer MVT from dimension 1 to a domain in higher dimension.

TODO #

Add theorems about derivs and fderivs of ContinuousAffineMaps once they will be ported to Mathlib 4.

Keywords #

affine map, derivative, differentiability

theorem AffineMap.hasStrictDerivAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (f : ๐•œ โ†’แตƒ[๐•œ] E) {x : ๐•œ} :
HasStrictDerivAt (โ‡‘f) (f.linear 1) x
theorem AffineMap.hasDerivAtFilter {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (f : ๐•œ โ†’แตƒ[๐•œ] E) {L : Filter ๐•œ} {x : ๐•œ} :
HasDerivAtFilter (โ‡‘f) (f.linear 1) x L
theorem AffineMap.hasDerivWithinAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (f : ๐•œ โ†’แตƒ[๐•œ] E) {s : Set ๐•œ} {x : ๐•œ} :
HasDerivWithinAt (โ‡‘f) (f.linear 1) s x
theorem AffineMap.hasDerivAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (f : ๐•œ โ†’แตƒ[๐•œ] E) {x : ๐•œ} :
HasDerivAt (โ‡‘f) (f.linear 1) x
theorem AffineMap.derivWithin {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (f : ๐•œ โ†’แตƒ[๐•œ] E) {s : Set ๐•œ} {x : ๐•œ} (hs : UniqueDiffWithinAt ๐•œ s x) :
derivWithin (โ‡‘f) s x = f.linear 1
@[simp]
theorem AffineMap.deriv {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (f : ๐•œ โ†’แตƒ[๐•œ] E) {x : ๐•œ} :
deriv (โ‡‘f) x = f.linear 1
theorem AffineMap.differentiableAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (f : ๐•œ โ†’แตƒ[๐•œ] E) {x : ๐•œ} :
DifferentiableAt ๐•œ (โ‡‘f) x
theorem AffineMap.differentiable {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (f : ๐•œ โ†’แตƒ[๐•œ] E) :
Differentiable ๐•œ โ‡‘f
theorem AffineMap.differentiableWithinAt {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (f : ๐•œ โ†’แตƒ[๐•œ] E) {s : Set ๐•œ} {x : ๐•œ} :
DifferentiableWithinAt ๐•œ (โ‡‘f) s x
theorem AffineMap.differentiableOn {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] (f : ๐•œ โ†’แตƒ[๐•œ] E) {s : Set ๐•œ} :
DifferentiableOn ๐•œ (โ‡‘f) s

Line map #

In this section we specialize some lemmas to AffineMap.lineMap because this map is very useful to deduce higher dimensional lemmas from one-dimensional versions.

theorem AffineMap.hasStrictDerivAt_lineMap {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {a b : E} {x : ๐•œ} :
HasStrictDerivAt (โ‡‘(AffineMap.lineMap a b)) (b - a) x
theorem AffineMap.hasDerivAt_lineMap {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {a b : E} {x : ๐•œ} :
HasDerivAt (โ‡‘(AffineMap.lineMap a b)) (b - a) x
theorem AffineMap.hasDerivWithinAt_lineMap {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {a b : E} {s : Set ๐•œ} {x : ๐•œ} :
HasDerivWithinAt (โ‡‘(AffineMap.lineMap a b)) (b - a) s x