HepLean Documentation

Mathlib.Analysis.Calculus.Deriv.Shift

Invariance of the derivative under translation #

We show that if a function f has derivative f' at a point a + x, then f (a + ยท) has derivative f' at x. Similarly for x + a.

theorem HasDerivAt.comp_const_add {๐•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : ๐•œ โ†’ F} {f' : F} (a x : ๐•œ) (hf : HasDerivAt f f' (a + x)) :
HasDerivAt (fun (x : ๐•œ) => f (a + x)) f' x

Translation in the domain does not change the derivative.

theorem HasDerivAt.comp_add_const {๐•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : ๐•œ โ†’ F} {f' : F} (x a : ๐•œ) (hf : HasDerivAt f f' (x + a)) :
HasDerivAt (fun (x : ๐•œ) => f (x + a)) f' x

Translation in the domain does not change the derivative.

theorem HasDerivAt.comp_const_sub {๐•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : ๐•œ โ†’ F} {f' : F} (a x : ๐•œ) (hf : HasDerivAt f f' (a - x)) :
HasDerivAt (fun (x : ๐•œ) => f (a - x)) (-f') x

Translation in the domain does not change the derivative.

theorem HasDerivAt.comp_sub_const {๐•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] {f : ๐•œ โ†’ F} {f' : F} (x a : ๐•œ) (hf : HasDerivAt f f' (x - a)) :
HasDerivAt (fun (x : ๐•œ) => f (x - a)) f' x

Translation in the domain does not change the derivative.

theorem deriv_comp_neg {๐•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : ๐•œ โ†’ F) (x : ๐•œ) :
deriv (fun (x : ๐•œ) => f (-x)) x = -deriv f (-x)

The derivative of x โ†ฆ f (-x) at a is the negative of the derivative of f at -a.

theorem deriv_comp_const_add {๐•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : ๐•œ โ†’ F) (a x : ๐•œ) :
deriv (fun (x : ๐•œ) => f (a + x)) x = deriv f (a + x)

Translation in the domain does not change the derivative.

theorem deriv_comp_add_const {๐•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : ๐•œ โ†’ F) (a x : ๐•œ) :
deriv (fun (x : ๐•œ) => f (x + a)) x = deriv f (x + a)

Translation in the domain does not change the derivative.

theorem deriv_comp_const_sub {๐•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : ๐•œ โ†’ F) (a x : ๐•œ) :
deriv (fun (x : ๐•œ) => f (a - x)) x = -deriv f (a - x)
theorem deriv_comp_sub_const {๐•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField ๐•œ] [NormedAddCommGroup F] [NormedSpace ๐•œ F] (f : ๐•œ โ†’ F) (a x : ๐•œ) :
deriv (fun (x : ๐•œ) => f (x - a)) x = deriv f (x - a)