HepLean Documentation

Mathlib.Analysis.Calculus.FDeriv.WithLp

Derivatives on WithLp #

theorem differentiableWithinAt_piLp {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup H] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [NormedSpace 𝕜 H] [Fintype ι] (p : ENNReal) [Fact (1 p)] {f : HPiLp p E} {t : Set H} {y : H} :
DifferentiableWithinAt 𝕜 f t y ∀ (i : ι), DifferentiableWithinAt 𝕜 (fun (x : H) => f x i) t y
theorem differentiableAt_piLp {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup H] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [NormedSpace 𝕜 H] [Fintype ι] (p : ENNReal) [Fact (1 p)] {f : HPiLp p E} {y : H} :
DifferentiableAt 𝕜 f y ∀ (i : ι), DifferentiableAt 𝕜 (fun (x : H) => f x i) y
theorem differentiableOn_piLp {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup H] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [NormedSpace 𝕜 H] [Fintype ι] (p : ENNReal) [Fact (1 p)] {f : HPiLp p E} {t : Set H} :
DifferentiableOn 𝕜 f t ∀ (i : ι), DifferentiableOn 𝕜 (fun (x : H) => f x i) t
theorem differentiable_piLp {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup H] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [NormedSpace 𝕜 H] [Fintype ι] (p : ENNReal) [Fact (1 p)] {f : HPiLp p E} :
Differentiable 𝕜 f ∀ (i : ι), Differentiable 𝕜 fun (x : H) => f x i
theorem hasStrictFDerivAt_piLp {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup H] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [NormedSpace 𝕜 H] [Fintype ι] (p : ENNReal) [Fact (1 p)] {f : HPiLp p E} {f' : H →L[𝕜] PiLp p E} {y : H} :
HasStrictFDerivAt f f' y ∀ (i : ι), HasStrictFDerivAt (fun (x : H) => f x i) ((PiLp.proj p E i).comp f') y
theorem hasFDerivWithinAt_piLp {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} {H : Type u_4} [NontriviallyNormedField 𝕜] [NormedAddCommGroup H] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [NormedSpace 𝕜 H] [Fintype ι] (p : ENNReal) [Fact (1 p)] {f : HPiLp p E} {f' : H →L[𝕜] PiLp p E} {t : Set H} {y : H} :
HasFDerivWithinAt f f' t y ∀ (i : ι), HasFDerivWithinAt (fun (x : H) => f x i) ((PiLp.proj p E i).comp f') t y
theorem PiLp.hasStrictFDerivAt_equiv {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} [NontriviallyNormedField 𝕜] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [Fintype ι] (p : ENNReal) [Fact (1 p)] (f : PiLp p E) :
HasStrictFDerivAt (⇑(WithLp.equiv p ((i : ι) → E i))) (↑(PiLp.continuousLinearEquiv p 𝕜 E)) f
theorem PiLp.hasStrictFDerivAt_equiv_symm {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} [NontriviallyNormedField 𝕜] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [Fintype ι] (p : ENNReal) [Fact (1 p)] (f : PiLp p E) :
HasStrictFDerivAt (⇑(WithLp.equiv p ((i : ι) → E i)).symm) (↑(PiLp.continuousLinearEquiv p 𝕜 E).symm) f
theorem PiLp.hasStrictFDerivAt_apply {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} [NontriviallyNormedField 𝕜] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [Fintype ι] (p : ENNReal) [Fact (1 p)] (f : PiLp p E) (i : ι) :
HasStrictFDerivAt (fun (f : PiLp p E) => f i) (PiLp.proj p E i) f
theorem PiLp.hasFDerivAt_equiv {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} [NontriviallyNormedField 𝕜] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [Fintype ι] (p : ENNReal) [Fact (1 p)] (f : PiLp p E) :
HasFDerivAt (⇑(WithLp.equiv p ((i : ι) → E i))) (↑(PiLp.continuousLinearEquiv p 𝕜 E)) f
theorem PiLp.hasFDerivAt_equiv_symm {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} [NontriviallyNormedField 𝕜] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [Fintype ι] (p : ENNReal) [Fact (1 p)] (f : PiLp p E) :
HasFDerivAt (⇑(WithLp.equiv p ((i : ι) → E i)).symm) (↑(PiLp.continuousLinearEquiv p 𝕜 E).symm) f
theorem PiLp.hasFDerivAt_apply {𝕜 : Type u_1} {ι : Type u_2} {E : ιType u_3} [NontriviallyNormedField 𝕜] [(i : ι) → NormedAddCommGroup (E i)] [(i : ι) → NormedSpace 𝕜 (E i)] [Fintype ι] (p : ENNReal) [Fact (1 p)] (f : PiLp p E) (i : ι) :
HasFDerivAt (fun (f : PiLp p E) => f i) (PiLp.proj p E i) f