HepLean Documentation

Mathlib.Analysis.NormedSpace.OperatorNorm.Asymptotics

Asymptotic statements about the operator norm #

This file contains lemmas about how operator norm on continuous linear maps interacts with IsBigO.

theorem ContinuousLinearMap.isBigOWith_id {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_5} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (l : Filter E) :
Asymptotics.IsBigOWith f l f fun (x : E) => x
theorem ContinuousLinearMap.isBigO_id {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_5} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (l : Filter E) :
f =O[l] fun (x : E) => x
theorem ContinuousLinearMap.isBigOWith_comp {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {F : Type u_5} {G : Type u_6} [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} [RingHomIsometric σ₂₃] {α : Type u_7} (g : F →SL[σ₂₃] G) (f : αF) (l : Filter α) :
Asymptotics.IsBigOWith g l (fun (x' : α) => g (f x')) f
theorem ContinuousLinearMap.isBigO_comp {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {F : Type u_5} {G : Type u_6} [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₂₃ : 𝕜₂ →+* 𝕜₃} [RingHomIsometric σ₂₃] {α : Type u_7} (g : F →SL[σ₂₃] G) (f : αF) (l : Filter α) :
(fun (x' : α) => g (f x')) =O[l] f
theorem ContinuousLinearMap.isBigOWith_sub {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_5} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (l : Filter E) (x : E) :
Asymptotics.IsBigOWith f l (fun (x' : E) => f (x' - x)) fun (x' : E) => x' - x
theorem ContinuousLinearMap.isBigO_sub {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_5} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (l : Filter E) (x : E) :
(fun (x' : E) => f (x' - x)) =O[l] fun (x' : E) => x' - x
theorem ContinuousLinearEquiv.isBigO_comp {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_5} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (e : E ≃SL[σ₁₂] F) [RingHomIsometric σ₁₂] {α : Type u_7} (f : αE) (l : Filter α) :
(fun (x' : α) => e (f x')) =O[l] f
theorem ContinuousLinearEquiv.isBigO_sub {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_5} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (e : E ≃SL[σ₁₂] F) [RingHomIsometric σ₁₂] (l : Filter E) (x : E) :
(fun (x' : E) => e (x' - x)) =O[l] fun (x' : E) => x' - x
theorem ContinuousLinearEquiv.isBigO_comp_rev {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_5} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (e : E ≃SL[σ₁₂] F) [RingHomIsometric σ₂₁] {α : Type u_7} (f : αE) (l : Filter α) :
f =O[l] fun (x' : α) => e (f x')
theorem ContinuousLinearEquiv.isBigO_sub_rev {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_5} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] (e : E ≃SL[σ₁₂] F) [RingHomIsometric σ₂₁] (l : Filter E) (x : E) :
(fun (x' : E) => x' - x) =O[l] fun (x' : E) => e (x' - x)