HepLean Documentation

Mathlib.Analysis.NormedSpace.OperatorNorm.NNNorm

Operator norm as an NNNorm #

Operator norm as an NNNorm, i.e. taking values in non-negative reals.

theorem ContinuousLinearMap.nnnorm_def {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
f‖₊ = sInf {c : NNReal | ∀ (x : E), f x‖₊ c * x‖₊}
theorem ContinuousLinearMap.opNNNorm_le_bound {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (M : NNReal) (hM : ∀ (x : E), f x‖₊ M * x‖₊) :

If one controls the norm of every A x, then one controls the norm of A.

@[deprecated ContinuousLinearMap.opNNNorm_le_bound]
theorem ContinuousLinearMap.op_nnnorm_le_bound {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (M : NNReal) (hM : ∀ (x : E), f x‖₊ M * x‖₊) :

Alias of ContinuousLinearMap.opNNNorm_le_bound.


If one controls the norm of every A x, then one controls the norm of A.

theorem ContinuousLinearMap.opNNNorm_le_bound' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (M : NNReal) (hM : ∀ (x : E), x‖₊ 0f x‖₊ M * x‖₊) :

If one controls the norm of every A x, ‖x‖₊ ≠ 0, then one controls the norm of A.

@[deprecated ContinuousLinearMap.opNNNorm_le_bound']
theorem ContinuousLinearMap.op_nnnorm_le_bound' {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (M : NNReal) (hM : ∀ (x : E), x‖₊ 0f x‖₊ M * x‖₊) :

Alias of ContinuousLinearMap.opNNNorm_le_bound'.


If one controls the norm of every A x, ‖x‖₊ ≠ 0, then one controls the norm of A.

For a continuous real linear map f, if one controls the norm of every f x, ‖x‖₊ = 1, then one controls the norm of f.

@[deprecated ContinuousLinearMap.opNNNorm_le_of_unit_nnnorm]

Alias of ContinuousLinearMap.opNNNorm_le_of_unit_nnnorm.


For a continuous real linear map f, if one controls the norm of every f x, ‖x‖₊ = 1, then one controls the norm of f.

theorem ContinuousLinearMap.opNNNorm_le_of_lipschitz {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {K : NNReal} (hf : LipschitzWith K f) :
@[deprecated ContinuousLinearMap.opNNNorm_le_of_lipschitz]
theorem ContinuousLinearMap.op_nnnorm_le_of_lipschitz {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {K : NNReal} (hf : LipschitzWith K f) :

Alias of ContinuousLinearMap.opNNNorm_le_of_lipschitz.

theorem ContinuousLinearMap.opNNNorm_eq_of_bounds {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {φ : E →SL[σ₁₂] F} (M : NNReal) (h_above : ∀ (x : E), φ x‖₊ M * x‖₊) (h_below : ∀ (N : NNReal), (∀ (x : E), φ x‖₊ N * x‖₊)M N) :
@[deprecated ContinuousLinearMap.opNNNorm_eq_of_bounds]
theorem ContinuousLinearMap.op_nnnorm_eq_of_bounds {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {φ : E →SL[σ₁₂] F} (M : NNReal) (h_above : ∀ (x : E), φ x‖₊ M * x‖₊) (h_below : ∀ (N : NNReal), (∀ (x : E), φ x‖₊ N * x‖₊)M N) :

Alias of ContinuousLinearMap.opNNNorm_eq_of_bounds.

theorem ContinuousLinearMap.opNNNorm_le_iff {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {C : NNReal} :
f‖₊ C ∀ (x : E), f x‖₊ C * x‖₊
@[deprecated ContinuousLinearMap.opNNNorm_le_iff]
theorem ContinuousLinearMap.op_nnnorm_le_iff {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] {f : E →SL[σ₁₂] F} {C : NNReal} :
f‖₊ C ∀ (x : E), f x‖₊ C * x‖₊

Alias of ContinuousLinearMap.opNNNorm_le_iff.

theorem ContinuousLinearMap.isLeast_opNNNorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
IsLeast {C : NNReal | ∀ (x : E), f x‖₊ C * x‖₊} f‖₊
@[deprecated ContinuousLinearMap.isLeast_opNNNorm]
theorem ContinuousLinearMap.isLeast_op_nnnorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
IsLeast {C : NNReal | ∀ (x : E), f x‖₊ C * x‖₊} f‖₊

Alias of ContinuousLinearMap.isLeast_opNNNorm.

theorem ContinuousLinearMap.opNNNorm_comp_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₁₂] [RingHomIsometric σ₂₃] (h : F →SL[σ₂₃] G) [RingHomIsometric σ₁₃] (f : E →SL[σ₁₂] F) :
@[deprecated ContinuousLinearMap.opNNNorm_comp_le]
theorem ContinuousLinearMap.op_nnnorm_comp_le {𝕜 : Type u_1} {𝕜₂ : Type u_2} {𝕜₃ : Type u_3} {E : Type u_4} {F : Type u_6} {G : Type u_8} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [SeminormedAddCommGroup G] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NontriviallyNormedField 𝕜₃] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [NormedSpace 𝕜₃ G] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₃ : 𝕜₂ →+* 𝕜₃} {σ₁₃ : 𝕜 →+* 𝕜₃} [RingHomCompTriple σ₁₂ σ₂₃ σ₁₃] [RingHomIsometric σ₁₂] [RingHomIsometric σ₂₃] (h : F →SL[σ₂₃] G) [RingHomIsometric σ₁₃] (f : E →SL[σ₁₂] F) :

Alias of ContinuousLinearMap.opNNNorm_comp_le.

theorem ContinuousLinearMap.le_opNNNorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x : E) :
@[deprecated ContinuousLinearMap.le_opNNNorm]
theorem ContinuousLinearMap.le_op_nnnorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x : E) :

Alias of ContinuousLinearMap.le_opNNNorm.

theorem ContinuousLinearMap.nndist_le_opNNNorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x y : E) :
nndist (f x) (f y) f‖₊ * nndist x y
@[deprecated ContinuousLinearMap.nndist_le_opNNNorm]
theorem ContinuousLinearMap.nndist_le_op_nnnorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) (x y : E) :
nndist (f x) (f y) f‖₊ * nndist x y

Alias of ContinuousLinearMap.nndist_le_opNNNorm.

theorem ContinuousLinearMap.lipschitz {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :

continuous linear maps are Lipschitz continuous.

theorem ContinuousLinearMap.lipschitz_apply {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (x : E) :
LipschitzWith x‖₊ fun (f : E →SL[σ₁₂] F) => f x

Evaluation of a continuous linear map f at a point is Lipschitz continuous in f.

theorem ContinuousLinearMap.exists_mul_lt_apply_of_lt_opNNNorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : NNReal} (hr : r < f‖₊) :
∃ (x : E), r * x‖₊ < f x‖₊
@[deprecated ContinuousLinearMap.exists_mul_lt_apply_of_lt_opNNNorm]
theorem ContinuousLinearMap.exists_mul_lt_apply_of_lt_op_nnnorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : NNReal} (hr : r < f‖₊) :
∃ (x : E), r * x‖₊ < f x‖₊

Alias of ContinuousLinearMap.exists_mul_lt_apply_of_lt_opNNNorm.

theorem ContinuousLinearMap.exists_mul_lt_of_lt_opNorm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : } (hr₀ : 0 r) (hr : r < f) :
∃ (x : E), r * x < f x
@[deprecated ContinuousLinearMap.exists_mul_lt_of_lt_opNorm]
theorem ContinuousLinearMap.exists_mul_lt_of_lt_op_norm {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : } (hr₀ : 0 r) (hr : r < f) :
∃ (x : E), r * x < f x

Alias of ContinuousLinearMap.exists_mul_lt_of_lt_opNorm.

theorem ContinuousLinearMap.exists_lt_apply_of_lt_opNNNorm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : NNReal} (hr : r < f‖₊) :
∃ (x : E), x‖₊ < 1 r < f x‖₊
@[deprecated ContinuousLinearMap.exists_lt_apply_of_lt_opNNNorm]
theorem ContinuousLinearMap.exists_lt_apply_of_lt_op_nnnorm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : NNReal} (hr : r < f‖₊) :
∃ (x : E), x‖₊ < 1 r < f x‖₊

Alias of ContinuousLinearMap.exists_lt_apply_of_lt_opNNNorm.

theorem ContinuousLinearMap.exists_lt_apply_of_lt_opNorm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : } (hr : r < f) :
∃ (x : E), x < 1 r < f x
@[deprecated ContinuousLinearMap.exists_lt_apply_of_lt_opNorm]
theorem ContinuousLinearMap.exists_lt_apply_of_lt_op_norm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) {r : } (hr : r < f) :
∃ (x : E), x < 1 r < f x

Alias of ContinuousLinearMap.exists_lt_apply_of_lt_opNorm.

theorem ContinuousLinearMap.sSup_unit_ball_eq_nnnorm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
sSup ((fun (x : E) => f x‖₊) '' Metric.ball 0 1) = f‖₊
theorem ContinuousLinearMap.sSup_unit_ball_eq_norm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
sSup ((fun (x : E) => f x) '' Metric.ball 0 1) = f
theorem ContinuousLinearMap.sSup_closed_unit_ball_eq_nnnorm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
sSup ((fun (x : E) => f x‖₊) '' Metric.closedBall 0 1) = f‖₊
theorem ContinuousLinearMap.sSup_closed_unit_ball_eq_norm {𝕜 : Type u_11} {𝕜₂ : Type u_12} {E : Type u_13} {F : Type u_14} [NormedAddCommGroup E] [SeminormedAddCommGroup F] [DenselyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] {σ₁₂ : 𝕜 →+* 𝕜₂} [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] [RingHomIsometric σ₁₂] (f : E →SL[σ₁₂] F) :
sSup ((fun (x : E) => f x) '' Metric.closedBall 0 1) = f
theorem ContinuousLinearEquiv.lipschitz {𝕜 : Type u_1} {𝕜₂ : Type u_2} {E : Type u_4} {F : Type u_6} [SeminormedAddCommGroup E] [SeminormedAddCommGroup F] [NontriviallyNormedField 𝕜] [NontriviallyNormedField 𝕜₂] [NormedSpace 𝕜 E] [NormedSpace 𝕜₂ F] {σ₁₂ : 𝕜 →+* 𝕜₂} {σ₂₁ : 𝕜₂ →+* 𝕜} [RingHomInvPair σ₁₂ σ₂₁] [RingHomInvPair σ₂₁ σ₁₂] [RingHomIsometric σ₁₂] (e : E ≃SL[σ₁₂] F) :