HepLean Documentation

Mathlib.CategoryTheory.FullSubcategory

Induced categories and full subcategories #

Given a category D and a function F : C → D from a type C to the objects of D, there is an essentially unique way to give C a category structure such that F becomes a fully faithful functor, namely by taking $$ Hom_C(X, Y) = Hom_D(FX, FY) $$. We call this the category induced from D along F.

As a special case, if C is a subtype of D, this produces the full subcategory of D on the objects belonging to C. In general the induced category is equivalent to the full subcategory of D on the image of F.

Implementation notes #

It looks odd to make D an explicit argument of InducedCategory, when it is determined by the argument F anyways. The reason to make D explicit is in order to control its syntactic form, so that instances like InducedCategory.has_forget₂ (elsewhere) refer to the correct form of D. This is used to set up several algebraic categories like

def CommMon : Type (u+1) := InducedCategory Mon (Bundled.map @CommMonoid.toMonoid) -- not InducedCategory (Bundled Monoid) (Bundled.map @CommMonoid.toMonoid), -- even though MonCat = Bundled Monoid!

def CategoryTheory.InducedCategory {C : Type u₁} (D : Type u₂) (_F : CD) :
Type u₁

InducedCategory D F, where F : C → D, is a typeclass synonym for C, which provides a category structure so that the morphisms X ⟶ Y are the morphisms in D from F X to F Y.

Equations
Instances For
    instance CategoryTheory.InducedCategory.hasCoeToSort {C : Type u₁} {D : Type u₂} (F : CD) {α : Sort u_1} [CoeSort D α] :
    Equations
    def CategoryTheory.InducedCategory.isoMk {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v, u₂} D] {F : CD} {X Y : CategoryTheory.InducedCategory D F} (f : F X F Y) :
    X Y

    Construct an isomorphism in the induced category from an isomorphism in the original category.

    Equations
    Instances For

      The forgetful functor from an induced category to the original category, forgetting the extra data.

      Equations
      Instances For
        @[simp]
        theorem CategoryTheory.inducedFunctor_map {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v, u₂} D] (F : CD) {X✝ Y✝ : CategoryTheory.InducedCategory D F} (f : X✝ Y✝) :
        @[simp]
        theorem CategoryTheory.inducedFunctor_obj {C : Type u₁} {D : Type u₂} [CategoryTheory.Category.{v, u₂} D] (F : CD) (a✝ : C) :
        (CategoryTheory.inducedFunctor F).obj a✝ = F a✝

        The induced functor inducedFunctor F : InducedCategory D F ⥤ D is fully faithful.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          Equations
          • =
          Equations
          • =
          structure CategoryTheory.FullSubcategory {C : Type u₁} (Z : CProp) :
          Type u₁

          A subtype-like structure for full subcategories. Morphisms just ignore the property. We don't use actual subtypes since the simp-normal form ↑X of X.val does not work well for full subcategories.

          See https://stacks.math.columbia.edu/tag/001D. We do not define 'strictly full' subcategories.

          • obj : C

            The category of which this is a full subcategory

          • property : Z self.obj

            The predicate satisfied by all objects in this subcategory

          Instances For
            theorem CategoryTheory.FullSubcategory.ext {C : Type u₁} {Z : CProp} {x y : CategoryTheory.FullSubcategory Z} (obj : x.obj = y.obj) :
            x = y

            The forgetful functor from a full subcategory into the original category ("forgetting" the condition).

            Equations
            Instances For
              @[reducible, inline]

              The inclusion of a full subcategory is fully faithful.

              Equations
              Instances For

                An implication of predicates Z → Z' induces a functor between full subcategories.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  @[simp]
                  theorem CategoryTheory.FullSubcategory.map_map {C : Type u₁} [CategoryTheory.Category.{v, u₁} C] {Z Z' : CProp} (h : ∀ ⦃X : C⦄, Z XZ' X) {X✝ Y✝ : CategoryTheory.FullSubcategory Z} (f : X✝ Y✝) :
                  @[simp]
                  theorem CategoryTheory.FullSubcategory.map_obj_obj {C : Type u₁} [CategoryTheory.Category.{v, u₁} C] {Z Z' : CProp} (h : ∀ ⦃X : C⦄, Z XZ' X) (X : CategoryTheory.FullSubcategory Z) :
                  instance CategoryTheory.FullSubcategory.full_map {C : Type u₁} [CategoryTheory.Category.{v, u₁} C] {Z Z' : CProp} (h : ∀ ⦃X : C⦄, Z XZ' X) :
                  Equations
                  • =
                  instance CategoryTheory.FullSubcategory.faithful_map {C : Type u₁} [CategoryTheory.Category.{v, u₁} C] {Z Z' : CProp} (h : ∀ ⦃X : C⦄, Z XZ' X) :
                  Equations
                  • =

                  A functor which maps objects to objects satisfying a certain property induces a lift through the full subcategory of objects satisfying that property.

                  Equations
                  Instances For
                    @[simp]
                    theorem CategoryTheory.FullSubcategory.lift_obj_obj {C : Type u₁} [CategoryTheory.Category.{v, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (P : DProp) (F : CategoryTheory.Functor C D) (hF : ∀ (X : C), P (F.obj X)) (X : C) :
                    ((CategoryTheory.FullSubcategory.lift P F hF).obj X).obj = F.obj X
                    @[simp]
                    theorem CategoryTheory.FullSubcategory.lift_map {C : Type u₁} [CategoryTheory.Category.{v, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (P : DProp) (F : CategoryTheory.Functor C D) (hF : ∀ (X : C), P (F.obj X)) {X✝ Y✝ : C} (f : X✝ Y✝) :
                    (CategoryTheory.FullSubcategory.lift P F hF).map f = F.map f

                    Composing the lift of a functor through a full subcategory with the inclusion yields the original functor. This is actually true definitionally.

                    Equations
                    Instances For
                      @[simp]
                      theorem CategoryTheory.fullSubcategoryInclusion_map_lift_map {C : Type u₁} [CategoryTheory.Category.{v, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (P : DProp) (F : CategoryTheory.Functor C D) (hF : ∀ (X : C), P (F.obj X)) {X Y : C} (f : X Y) :
                      instance CategoryTheory.instFaithfulFullSubcategoryLift {C : Type u₁} [CategoryTheory.Category.{v, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (P : DProp) (F : CategoryTheory.Functor C D) (hF : ∀ (X : C), P (F.obj X)) [F.Faithful] :
                      Equations
                      • =
                      instance CategoryTheory.instFullFullSubcategoryLift {C : Type u₁} [CategoryTheory.Category.{v, u₁} C] {D : Type u₂} [CategoryTheory.Category.{v₂, u₂} D] (P : DProp) (F : CategoryTheory.Functor C D) (hF : ∀ (X : C), P (F.obj X)) [F.Full] :
                      Equations
                      • =
                      @[simp]