HepLean Documentation

Mathlib.CategoryTheory.HomCongr

Conjugate morphisms by isomorphisms #

We define CategoryTheory.Iso.homCongr : (X ≅ X₁) → (Y ≅ Y₁) → (X ⟶ Y) ≃ (X₁ ⟶ Y₁), cf. Equiv.arrowCongr, and CategoryTheory.Iso.isoCongr : (f : X₁ ≅ X₂) → (g : Y₁ ≅ Y₂) → (X₁ ≅ Y₁) ≃ (X₂ ≅ Y₂).

As corollaries, an isomorphism α : X ≅ Y defines

@[simp]
theorem CategoryTheory.Iso.homCongr_symm_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {X₁ : C} {Y₁ : C} (α : X X₁) (β : Y Y₁) (f : X₁ Y₁) :
@[simp]
theorem CategoryTheory.Iso.homCongr_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {X₁ : C} {Y₁ : C} (α : X X₁) (β : Y Y₁) (f : X Y) :
def CategoryTheory.Iso.homCongr {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {X₁ : C} {Y₁ : C} (α : X X₁) (β : Y Y₁) :
(X Y) (X₁ Y₁)

If X is isomorphic to X₁ and Y is isomorphic to Y₁, then there is a natural bijection between X ⟶ Y and X₁ ⟶ Y₁. See also Equiv.arrowCongr.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    theorem CategoryTheory.Iso.homCongr_comp {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y : C} {Z : C} {X₁ : C} {Y₁ : C} {Z₁ : C} (α : X X₁) (β : Y Y₁) (γ : Z Z₁) (f : X Y) (g : Y Z) :
    (α.homCongr γ) (CategoryTheory.CategoryStruct.comp f g) = CategoryTheory.CategoryStruct.comp ((α.homCongr β) f) ((β.homCongr γ) g)
    theorem CategoryTheory.Iso.homCongr_trans {C : Type u} [CategoryTheory.Category.{v, u} C] {X₁ : C} {Y₁ : C} {X₂ : C} {Y₂ : C} {X₃ : C} {Y₃ : C} (α₁ : X₁ X₂) (β₁ : Y₁ Y₂) (α₂ : X₂ X₃) (β₂ : Y₂ Y₃) (f : X₁ Y₁) :
    ((α₁ ≪≫ α₂).homCongr (β₁ ≪≫ β₂)) f = ((α₁.homCongr β₁).trans (α₂.homCongr β₂)) f
    @[simp]
    theorem CategoryTheory.Iso.homCongr_symm {C : Type u} [CategoryTheory.Category.{v, u} C] {X₁ : C} {Y₁ : C} {X₂ : C} {Y₂ : C} (α : X₁ X₂) (β : Y₁ Y₂) :
    (α.homCongr β).symm = α.symm.homCongr β.symm
    @[simp]
    theorem CategoryTheory.Iso.isoCongr_symm_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {X₁ : C} {Y₁ : C} {X₂ : C} {Y₂ : C} (f : X₁ X₂) (g : Y₁ Y₂) (h : X₂ Y₂) :
    (f.isoCongr g).symm h = f ≪≫ h ≪≫ g.symm
    @[simp]
    theorem CategoryTheory.Iso.isoCongr_apply {C : Type u} [CategoryTheory.Category.{v, u} C] {X₁ : C} {Y₁ : C} {X₂ : C} {Y₂ : C} (f : X₁ X₂) (g : Y₁ Y₂) (h : X₁ Y₁) :
    (f.isoCongr g) h = f.symm ≪≫ h ≪≫ g
    def CategoryTheory.Iso.isoCongr {C : Type u} [CategoryTheory.Category.{v, u} C] {X₁ : C} {Y₁ : C} {X₂ : C} {Y₂ : C} (f : X₁ X₂) (g : Y₁ Y₂) :
    (X₁ Y₁) (X₂ Y₂)

    If X is isomorphic to X₁ and Y is isomorphic to Y₁, then there is a bijection between X ≅ Y and X₁ ≅ Y₁.

    Equations
    • f.isoCongr g = { toFun := fun (h : X₁ Y₁) => f.symm ≪≫ h ≪≫ g, invFun := fun (h : X₂ Y₂) => f ≪≫ h ≪≫ g.symm, left_inv := , right_inv := }
    Instances For
      def CategoryTheory.Iso.isoCongrLeft {C : Type u} [CategoryTheory.Category.{v, u} C] {X₁ : C} {X₂ : C} {Y : C} (f : X₁ X₂) :
      (X₁ Y) (X₂ Y)

      If X₁ is isomorphic to X₂, then there is a bijection between X₁ ≅ Y and X₂ ≅ Y.

      Equations
      Instances For
        def CategoryTheory.Iso.isoCongrRight {C : Type u} [CategoryTheory.Category.{v, u} C] {X : C} {Y₁ : C} {Y₂ : C} (g : Y₁ Y₂) :
        (X Y₁) (X Y₂)

        If Y₁ is isomorphic to Y₂, then there is a bijection between X ≅ Y₁ and X ≅ Y₂.

        Equations
        Instances For
          theorem CategoryTheory.Functor.map_homCongr {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₁} [CategoryTheory.Category.{v₁, u₁} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} {X₁ : C} {Y₁ : C} (α : X X₁) (β : Y Y₁) (f : X Y) :
          F.map ((α.homCongr β) f) = ((F.mapIso α).homCongr (F.mapIso β)) (F.map f)
          theorem CategoryTheory.Functor.map_isoCongr {C : Type u} [CategoryTheory.Category.{v, u} C] {D : Type u₁} [CategoryTheory.Category.{v₁, u₁} D] (F : CategoryTheory.Functor C D) {X : C} {Y : C} {X₁ : C} {Y₁ : C} (α : X X₁) (β : Y Y₁) (f : X Y) :
          F.mapIso ((α.isoCongr β) f) = ((F.mapIso α).isoCongr (F.mapIso β)) (F.mapIso f)