HepLean Documentation

Mathlib.CategoryTheory.Preadditive.Biproducts

Basic facts about biproducts in preadditive categories. #

In (or between) preadditive categories,

There are connections between this material and the special case of the category whose morphisms are matrices over a ring, in particular the Schur complement (see Mathlib.LinearAlgebra.Matrix.SchurComplement). In particular, the declarations CategoryTheory.Biprod.isoElim, CategoryTheory.Biprod.gaussian and Matrix.invertibleOfFromBlocks₁₁Invertible are all closely related.

In a preadditive category, we can construct a biproduct for f : J → C from any bicone b for f satisfying total : ∑ j : J, b.π j ≫ b.ι j = 𝟙 b.X.

(That is, such a bicone is a limit cone and a colimit cocone.)

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    In a preadditive category, we can construct a biproduct for f : J → C from any bicone b for f satisfying total : ∑ j : J, b.π j ≫ b.ι j = 𝟙 b.X.

    (That is, such a bicone is a limit cone and a colimit cocone.)

    In a preadditive category, any finite bicone which is a limit cone is in fact a bilimit bicone.

    Equations
    Instances For

      We can turn any limit cone over a pair into a bilimit bicone.

      Equations
      • One or more equations did not get rendered due to their size.
      Instances For

        In a preadditive category, any finite bicone which is a colimit cocone is in fact a bilimit bicone.

        Equations
        Instances For

          We can turn any limit cone over a pair into a bilimit bicone.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            In a preadditive category, if the product over f : J → C exists, then the biproduct over f exists.

            In a preadditive category, if the coproduct over f : J → C exists, then the biproduct over f exists.

            @[simp]

            In any preadditive category, any biproduct satisfies ∑ j : J, biproduct.π f j ≫ biproduct.ι f j = 𝟙 (⨁ f)

            Reindex a categorical biproduct via an equivalence of the index types.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For

              In a preadditive category, we can construct a binary biproduct for X Y : C from any binary bicone b satisfying total : b.fst ≫ b.inl + b.snd ≫ b.inr = 𝟙 b.X.

              (That is, such a bicone is a limit cone and a colimit cocone.)

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For

                In a preadditive category, we can construct a binary biproduct for X Y : C from any binary bicone b satisfying total : b.fst ≫ b.inl + b.snd ≫ b.inr = 𝟙 b.X.

                (That is, such a bicone is a limit cone and a colimit cocone.)

                We can turn any limit cone over a pair into a bicone.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  In a preadditive category, any binary bicone which is a limit cone is in fact a bilimit bicone.

                  Equations
                  Instances For

                    In a preadditive category, if the product of X and Y exists, then the binary biproduct of X and Y exists.

                    We can turn any colimit cocone over a pair into a bicone.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      In a preadditive category, any binary bicone which is a colimit cocone is in fact a bilimit bicone.

                      Equations
                      Instances For

                        We can turn any colimit cocone over a pair into a bilimit bicone.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          In a preadditive category, if the coproduct of X and Y exists, then the binary biproduct of X and Y exists.

                          @[simp]
                          theorem CategoryTheory.Limits.biprod.total {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] {X Y : C} [CategoryTheory.Limits.HasBinaryBiproduct X Y] :
                          CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.fst CategoryTheory.Limits.biprod.inl + CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.snd CategoryTheory.Limits.biprod.inr = CategoryTheory.CategoryStruct.id (X Y)

                          In any preadditive category, any binary biproduct satisfies biprod.fst ≫ biprod.inl + biprod.snd ≫ biprod.inr = 𝟙 (X ⊞ Y).

                          theorem CategoryTheory.Limits.biprod.map_eq {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {W X Y Z : C} {f : W Y} {g : X Z} :
                          CategoryTheory.Limits.biprod.map f g = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.fst (CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.inl) + CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.snd (CategoryTheory.CategoryStruct.comp g CategoryTheory.Limits.biprod.inr)

                          Every split mono f with a cokernel induces a binary bicone with f as its inl and the cokernel map as its snd. We will show in is_bilimit_binary_bicone_of_split_mono_of_cokernel that this binary bicone is in fact already a biproduct.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            If b is a binary bicone such that b.inl is a kernel of b.snd, then b is a bilimit bicone.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For

                              If b is a binary bicone such that b.inr is a kernel of b.fst, then b is a bilimit bicone.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                If b is a binary bicone such that b.fst is a cokernel of b.inr, then b is a bilimit bicone.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For

                                  If b is a binary bicone such that b.snd is a cokernel of b.inl, then b is a bilimit bicone.

                                  Equations
                                  • One or more equations did not get rendered due to their size.
                                  Instances For

                                    Every split epi f with a kernel induces a binary bicone with f as its snd and the kernel map as its inl. We will show in binary_bicone_of_is_split_mono_of_cokernel that this binary bicone is in fact already a biproduct.

                                    Equations
                                    • One or more equations did not get rendered due to their size.
                                    Instances For

                                      The bicone constructed in binaryBiconeOfIsSplitEpiOfKernel is a bilimit. This is a version of the splitting lemma that holds in all preadditive categories.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        theorem CategoryTheory.Preadditive.ext {C : Type u} {inst✝ : CategoryTheory.Category.{v, u} C} {x y : CategoryTheory.Preadditive C} (homGroup : CategoryTheory.Preadditive.homGroup = CategoryTheory.Preadditive.homGroup) :
                                        x = y

                                        The existence of binary biproducts implies that there is at most one preadditive structure.

                                        Equations
                                        • =
                                        def CategoryTheory.Biprod.ofComponents {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f₁₁ : X₁ Y₁) (f₁₂ : X₁ Y₂) (f₂₁ : X₂ Y₁) (f₂₂ : X₂ Y₂) :
                                        X₁ X₂ Y₁ Y₂

                                        The "matrix" morphism X₁ ⊞ X₂ ⟶ Y₁ ⊞ Y₂ with specified components.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          @[simp]
                                          theorem CategoryTheory.Biprod.inl_ofComponents {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f₁₁ : X₁ Y₁) (f₁₂ : X₁ Y₂) (f₂₁ : X₂ Y₁) (f₂₂ : X₂ Y₂) :
                                          CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl (CategoryTheory.Biprod.ofComponents f₁₁ f₁₂ f₂₁ f₂₂) = CategoryTheory.CategoryStruct.comp f₁₁ CategoryTheory.Limits.biprod.inl + CategoryTheory.CategoryStruct.comp f₁₂ CategoryTheory.Limits.biprod.inr
                                          @[simp]
                                          theorem CategoryTheory.Biprod.inr_ofComponents {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f₁₁ : X₁ Y₁) (f₁₂ : X₁ Y₂) (f₂₁ : X₂ Y₁) (f₂₂ : X₂ Y₂) :
                                          CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inr (CategoryTheory.Biprod.ofComponents f₁₁ f₁₂ f₂₁ f₂₂) = CategoryTheory.CategoryStruct.comp f₂₁ CategoryTheory.Limits.biprod.inl + CategoryTheory.CategoryStruct.comp f₂₂ CategoryTheory.Limits.biprod.inr
                                          @[simp]
                                          theorem CategoryTheory.Biprod.ofComponents_fst {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f₁₁ : X₁ Y₁) (f₁₂ : X₁ Y₂) (f₂₁ : X₂ Y₁) (f₂₂ : X₂ Y₂) :
                                          CategoryTheory.CategoryStruct.comp (CategoryTheory.Biprod.ofComponents f₁₁ f₁₂ f₂₁ f₂₂) CategoryTheory.Limits.biprod.fst = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.fst f₁₁ + CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.snd f₂₁
                                          @[simp]
                                          theorem CategoryTheory.Biprod.ofComponents_snd {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f₁₁ : X₁ Y₁) (f₁₂ : X₁ Y₂) (f₂₁ : X₂ Y₁) (f₂₂ : X₂ Y₂) :
                                          CategoryTheory.CategoryStruct.comp (CategoryTheory.Biprod.ofComponents f₁₁ f₁₂ f₂₁ f₂₂) CategoryTheory.Limits.biprod.snd = CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.fst f₁₂ + CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.snd f₂₂
                                          @[simp]
                                          theorem CategoryTheory.Biprod.ofComponents_eq {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f : X₁ X₂ Y₁ Y₂) :
                                          CategoryTheory.Biprod.ofComponents (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl (CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.fst)) (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl (CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.snd)) (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inr (CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.fst)) (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inr (CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.snd)) = f
                                          @[simp]
                                          theorem CategoryTheory.Biprod.ofComponents_comp {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ Z₁ Z₂ : C} (f₁₁ : X₁ Y₁) (f₁₂ : X₁ Y₂) (f₂₁ : X₂ Y₁) (f₂₂ : X₂ Y₂) (g₁₁ : Y₁ Z₁) (g₁₂ : Y₁ Z₂) (g₂₁ : Y₂ Z₁) (g₂₂ : Y₂ Z₂) :

                                          The unipotent upper triangular matrix

                                          (1 r)
                                          (0 1)
                                          

                                          as an isomorphism.

                                          Equations
                                          • One or more equations did not get rendered due to their size.
                                          Instances For

                                            The unipotent lower triangular matrix

                                            (1 0)
                                            (r 1)
                                            

                                            as an isomorphism.

                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              def CategoryTheory.Biprod.gaussian' {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f₁₁ : X₁ Y₁) (f₁₂ : X₁ Y₂) (f₂₁ : X₂ Y₁) (f₂₂ : X₂ Y₂) [CategoryTheory.IsIso f₁₁] :
                                              (L : X₁ X₂ X₁ X₂) ×' (R : Y₁ Y₂ Y₁ Y₂) ×' (g₂₂ : X₂ Y₂) ×' CategoryTheory.CategoryStruct.comp L.hom (CategoryTheory.CategoryStruct.comp (CategoryTheory.Biprod.ofComponents f₁₁ f₁₂ f₂₁ f₂₂) R.hom) = CategoryTheory.Limits.biprod.map f₁₁ g₂₂

                                              If f is a morphism X₁ ⊞ X₂ ⟶ Y₁ ⊞ Y₂ whose X₁ ⟶ Y₁ entry is an isomorphism, then we can construct isomorphisms L : X₁ ⊞ X₂ ≅ X₁ ⊞ X₂ and R : Y₁ ⊞ Y₂ ≅ Y₁ ⊞ Y₂ so that L.hom ≫ g ≫ R.hom is diagonal (with X₁ ⟶ Y₁ component still f), via Gaussian elimination.

                                              (This is the version of Biprod.gaussian written in terms of components.)

                                              Equations
                                              • One or more equations did not get rendered due to their size.
                                              Instances For
                                                def CategoryTheory.Biprod.gaussian {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f : X₁ X₂ Y₁ Y₂) [CategoryTheory.IsIso (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl (CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.fst))] :
                                                (L : X₁ X₂ X₁ X₂) ×' (R : Y₁ Y₂ Y₁ Y₂) ×' (g₂₂ : X₂ Y₂) ×' CategoryTheory.CategoryStruct.comp L.hom (CategoryTheory.CategoryStruct.comp f R.hom) = CategoryTheory.Limits.biprod.map (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl (CategoryTheory.CategoryStruct.comp f CategoryTheory.Limits.biprod.fst)) g₂₂

                                                If f is a morphism X₁ ⊞ X₂ ⟶ Y₁ ⊞ Y₂ whose X₁ ⟶ Y₁ entry is an isomorphism, then we can construct isomorphisms L : X₁ ⊞ X₂ ≅ X₁ ⊞ X₂ and R : Y₁ ⊞ Y₂ ≅ Y₁ ⊞ Y₂ so that L.hom ≫ g ≫ R.hom is diagonal (with X₁ ⟶ Y₁ component still f), via Gaussian elimination.

                                                Equations
                                                • One or more equations did not get rendered due to their size.
                                                Instances For
                                                  def CategoryTheory.Biprod.isoElim' {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f₁₁ : X₁ Y₁) (f₁₂ : X₁ Y₂) (f₂₁ : X₂ Y₁) (f₂₂ : X₂ Y₂) [CategoryTheory.IsIso f₁₁] [CategoryTheory.IsIso (CategoryTheory.Biprod.ofComponents f₁₁ f₁₂ f₂₁ f₂₂)] :
                                                  X₂ Y₂

                                                  If X₁ ⊞ X₂ ≅ Y₁ ⊞ Y₂ via a two-by-two matrix whose X₁ ⟶ Y₁ entry is an isomorphism, then we can construct an isomorphism X₂ ≅ Y₂, via Gaussian elimination.

                                                  Equations
                                                  • One or more equations did not get rendered due to their size.
                                                  Instances For
                                                    def CategoryTheory.Biprod.isoElim {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] [CategoryTheory.Limits.HasBinaryBiproducts C] {X₁ X₂ Y₁ Y₂ : C} (f : X₁ X₂ Y₁ Y₂) [CategoryTheory.IsIso (CategoryTheory.CategoryStruct.comp CategoryTheory.Limits.biprod.inl (CategoryTheory.CategoryStruct.comp f.hom CategoryTheory.Limits.biprod.fst))] :
                                                    X₂ Y₂

                                                    If f is an isomorphism X₁ ⊞ X₂ ≅ Y₁ ⊞ Y₂ whose X₁ ⟶ Y₁ entry is an isomorphism, then we can construct an isomorphism X₂ ≅ Y₂, via Gaussian elimination.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For

                                                      If f : ⨁ S ⟶ ⨁ T is an isomorphism, and s is a non-trivial summand of the source, then there is some t in the target so that the s, t matrix entry of f is nonzero.

                                                      Equations
                                                      Instances For

                                                        A functor between preadditive categories that preserves (zero morphisms and) finite biproducts preserves finite products.

                                                        A functor between preadditive categories that preserves (zero morphisms and) finite products preserves finite biproducts.

                                                        If the (product-like) biproduct comparison for F and f is a monomorphism, then F preserves the biproduct of f. For the converse, see mapBiproduct.

                                                        If the (coproduct-like) biproduct comparison for F and f is an epimorphism, then F preserves the biproduct of F and f. For the converse, see mapBiproduct.

                                                        A functor between preadditive categories that preserves (zero morphisms and) finite biproducts preserves finite coproducts.

                                                        A functor between preadditive categories that preserves (zero morphisms and) finite coproducts preserves finite biproducts.

                                                        A functor between preadditive categories that preserves (zero morphisms and) binary biproducts preserves binary products.

                                                        A functor between preadditive categories that preserves (zero morphisms and) binary products preserves binary biproducts.

                                                        If the (product-like) biproduct comparison for F, X and Y is a monomorphism, then F preserves the biproduct of X and Y. For the converse, see map_biprod.

                                                        If the (coproduct-like) biproduct comparison for F, X and Y is an epimorphism, then F preserves the biproduct of X and Y. For the converse, see mapBiprod.

                                                        A functor between preadditive categories that preserves (zero morphisms and) binary biproducts preserves binary coproducts.

                                                        A functor between preadditive categories that preserves (zero morphisms and) binary coproducts preserves binary biproducts.