HepLean Documentation

Mathlib.Data.ENat.Defs

Definition and notation for extended natural numbers #

def ENat :

Extended natural numbers ℕ∞ = WithTop.

Equations
Instances For
    Equations
    Equations

    Extended natural numbers ℕ∞ = WithTop.

    Equations
    Instances For
      Equations
      def ENat.recTopCoe {C : ℕ∞Sort u_1} (top : C ) (coe : (a : ) → C a) (n : ℕ∞) :
      C n

      Recursor for ENat using the preferred forms and ↑a.

      Equations
      Instances For
        @[simp]
        theorem ENat.recTopCoe_top {C : ℕ∞Sort u_1} (d : C ) (f : (a : ) → C a) :
        @[simp]
        theorem ENat.recTopCoe_coe {C : ℕ∞Sort u_1} (d : C ) (f : (a : ) → C a) (x : ) :
        ENat.recTopCoe d f x = f x