HepLean Documentation

Mathlib.Data.Finite.Prod

Finiteness of products #

instance Finite.instProd {α : Type u_1} {β : Type u_2} [Finite α] [Finite β] :
Finite (α × β)
Equations
  • =
instance Finite.instPProd {α : Sort u_3} {β : Sort u_4} [Finite α] [Finite β] :
Finite (α ×' β)
Equations
  • =
theorem Finite.prod_left {α : Type u_1} (β : Type u_3) [Finite (α × β)] [Nonempty β] :
theorem Finite.prod_right {β : Type u_2} (α : Type u_3) [Finite (α × β)] [Nonempty α] :
instance Pi.finite {α : Sort u_3} {β : αSort u_4} [Finite α] [∀ (a : α), Finite (β a)] :
Finite ((a : α) → β a)
Equations
  • =
instance instFiniteSym {α : Type u_1} [Finite α] {n : } :
Finite (Sym α n)
Equations
  • =
instance Function.Embedding.finite {α : Sort u_3} {β : Sort u_4} [Finite β] :
Finite (α β)
Equations
  • =
instance Equiv.finite_right {α : Sort u_3} {β : Sort u_4} [Finite β] :
Finite (α β)
Equations
  • =
instance Equiv.finite_left {α : Sort u_3} {β : Sort u_4} [Finite α] :
Finite (α β)
Equations
  • =