HepLean Documentation

Mathlib.Data.Fintype.Quotient

Quotients of families indexed by a finite type #

This file proves some basic facts and defines lifting and recursion principle for quotients indexed by a finite type.

Main definitions #

def Quotient.listChoice {ι : Type u_1} [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {l : List ι} (q : (i : ι) → i lQuotient (S i)) :
Quotient piSetoid

Given a collection of setoids indexed by a type ι, a list l of indices, and a function that for each i ∈ l gives a term of the corresponding quotient type, then there is a corresponding term in the quotient of the product of the setoids indexed by l.

Equations
Instances For
    theorem Quotient.listChoice_mk {ι : Type u_1} [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {l : List ι} (a : (i : ι) → i lα i) :
    (Quotient.listChoice fun (x1 : ι) (x2 : x1 l) => a x1 x2) = a
    theorem Quotient.list_ind {ι : Type u_1} [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {l : List ι} {C : ((i : ι) → i lQuotient (S i))Prop} (f : ∀ (a : (i : ι) → i lα i), C fun (x1 : ι) (x2 : x1 l) => a x1 x2) (q : (i : ι) → i lQuotient (S i)) :
    C q

    Choice-free induction principle for quotients indexed by a List.

    theorem Quotient.ind_fintype_pi {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {C : ((i : ι) → Quotient (S i))Prop} (f : ∀ (a : (i : ι) → α i), C fun (x : ι) => a x) (q : (i : ι) → Quotient (S i)) :
    C q

    Choice-free induction principle for quotients indexed by a finite type. See Quotient.induction_on_pi for the general version assuming Classical.choice.

    theorem Quotient.induction_on_fintype_pi {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {C : ((i : ι) → Quotient (S i))Prop} (q : (i : ι) → Quotient (S i)) (f : ∀ (a : (i : ι) → α i), C fun (x : ι) => a x) :
    C q

    Choice-free induction principle for quotients indexed by a finite type. See Quotient.induction_on_pi for the general version assuming Classical.choice.

    def Quotient.finChoice {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} (q : (i : ι) → Quotient (S i)) :
    Quotient piSetoid

    Given a collection of setoids indexed by a fintype ι and a function that for each i : ι gives a term of the corresponding quotient type, then there is corresponding term in the quotient of the product of the setoids. See Quotient.choice for the noncomputable general version.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Quotient.finChoice_eq {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} (a : (i : ι) → α i) :
      (Quotient.finChoice fun (x : ι) => a x) = a
      theorem Quotient.eval_finChoice {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} (f : (i : ι) → Quotient (S i)) :
      def Quotient.finLiftOn {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {β : Sort u_3} (q : (i : ι) → Quotient (S i)) (f : ((i : ι) → α i)β) (h : ∀ (a b : (i : ι) → α i), (∀ (i : ι), a i b i)f a = f b) :
      β

      Lift a function on ∀ i, α i to a function on ∀ i, Quotient (S i).

      Equations
      Instances For
        @[simp]
        theorem Quotient.finLiftOn_empty {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {β : Sort u_3} [e : IsEmpty ι] (q : (i : ι) → Quotient (S i)) :
        Quotient.finLiftOn q = fun (f : ((i : ι) → α i)β) (x : ∀ (a b : (i : ι) → α i), (∀ (i : ι), a i b i)f a = f b) => f fun (a : ι) => e.elim a
        @[simp]
        theorem Quotient.finLiftOn_mk {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {β : Sort u_3} (a : (i : ι) → α i) :
        (Quotient.finLiftOn fun (x : ι) => a x) = fun (f : ((i : ι) → α i)β) (x : ∀ (a b : (i : ι) → α i), (∀ (i : ι), a i b i)f a = f b) => f a
        def Quotient.finChoiceEquiv {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} :
        ((i : ι) → Quotient (S i)) Quotient piSetoid

        Quotient.finChoice as an equivalence.

        Equations
        • Quotient.finChoiceEquiv = { toFun := Quotient.finChoice, invFun := Quotient.eval, left_inv := , right_inv := }
        Instances For
          @[simp]
          theorem Quotient.finChoiceEquiv_symm_apply {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} (q : Quotient inferInstance) (i : ι) :
          Quotient.finChoiceEquiv.symm q i = q.eval i
          @[simp]
          theorem Quotient.finChoiceEquiv_apply {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} (q : (i : ι) → Quotient (S i)) :
          Quotient.finChoiceEquiv q = Quotient.finChoice q
          def Quotient.finHRecOn {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {C : ((i : ι) → Quotient (S i))Sort u_4} (q : (i : ι) → Quotient (S i)) (f : (a : (i : ι) → α i) → C fun (x : ι) => a x) (h : ∀ (a b : (i : ι) → α i), (∀ (i : ι), a i b i)HEq (f a) (f b)) :
          C q

          Recursion principle for quotients indexed by a finite type.

          Equations
          Instances For
            def Quotient.finRecOn {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {C : ((i : ι) → Quotient (S i))Sort u_4} (q : (i : ι) → Quotient (S i)) (f : (a : (i : ι) → α i) → C fun (x : ι) => a x) (h : ∀ (a b : (i : ι) → α i) (h : ∀ (i : ι), a i b i), f a = f b) :
            C q

            Recursion principle for quotients indexed by a finite type.

            Equations
            Instances For
              @[simp]
              theorem Quotient.finHRecOn_mk {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {C : ((i : ι) → Quotient (S i))Sort u_4} (a : (i : ι) → α i) :
              (Quotient.finHRecOn fun (x : ι) => a x) = fun (f : (a : (i : ι) → α i) → C fun (x : ι) => a x) (x : ∀ (a b : (i : ι) → α i), (∀ (i : ι), a i b i)HEq (f a) (f b)) => f a
              @[simp]
              theorem Quotient.finRecOn_mk {ι : Type u_1} [Fintype ι] [DecidableEq ι] {α : ιSort u_2} {S : (i : ι) → Setoid (α i)} {C : ((i : ι) → Quotient (S i))Sort u_4} (a : (i : ι) → α i) :
              (Quotient.finRecOn fun (x : ι) => a x) = fun (f : (a : (i : ι) → α i) → C fun (x : ι) => a x) (x : ∀ (a b : (i : ι) → α i) (h : ∀ (i : ι), a i b i), f a = f b) => f a
              def Trunc.finChoice {ι : Type u_1} [DecidableEq ι] [Fintype ι] {α : ιSort u_2} (q : (i : ι) → Trunc (α i)) :
              Trunc ((i : ι) → α i)

              Given a function that for each i : ι gives a term of the corresponding truncation type, then there is corresponding term in the truncation of the product.

              Equations
              Instances For
                theorem Trunc.finChoice_eq {ι : Type u_1} [DecidableEq ι] [Fintype ι] {α : ιSort u_2} (f : (i : ι) → α i) :
                (Trunc.finChoice fun (i : ι) => Trunc.mk (f i)) = Trunc.mk f
                def Trunc.finLiftOn {ι : Type u_1} [DecidableEq ι] [Fintype ι] {α : ιSort u_2} {β : Sort u_3} (q : (i : ι) → Trunc (α i)) (f : ((i : ι) → α i)β) (h : ∀ (a b : (i : ι) → α i), f a = f b) :
                β

                Lift a function on ∀ i, α i to a function on ∀ i, Trunc (α i).

                Equations
                Instances For
                  @[simp]
                  theorem Trunc.finLiftOn_empty {ι : Type u_1} [DecidableEq ι] [Fintype ι] {α : ιSort u_2} {β : Sort u_3} [e : IsEmpty ι] (q : (i : ι) → Trunc (α i)) :
                  Trunc.finLiftOn q = fun (f : ((i : ι) → α i)β) (x : ∀ (a b : (i : ι) → α i), f a = f b) => f fun (a : ι) => e.elim a
                  @[simp]
                  theorem Trunc.finLiftOn_mk {ι : Type u_1} [DecidableEq ι] [Fintype ι] {α : ιSort u_2} {β : Sort u_3} (a : (i : ι) → α i) :
                  (Trunc.finLiftOn fun (x : ι) => a x) = fun (f : ((i : ι) → α i)β) (x : ∀ (a b : (i : ι) → α i), f a = f b) => f a
                  def Trunc.finChoiceEquiv {ι : Type u_1} [DecidableEq ι] [Fintype ι] {α : ιSort u_2} :
                  ((i : ι) → Trunc (α i)) Trunc ((i : ι) → α i)

                  Trunc.finChoice as an equivalence.

                  Equations
                  • Trunc.finChoiceEquiv = { toFun := Trunc.finChoice, invFun := fun (q : Trunc ((i : ι) → α i)) (i : ι) => Trunc.map (fun (x : (i : ι) → α i) => x i) q, left_inv := , right_inv := }
                  Instances For
                    @[simp]
                    theorem Trunc.finChoiceEquiv_symm_apply {ι : Type u_1} [DecidableEq ι] [Fintype ι] {α : ιSort u_2} (q : Trunc ((i : ι) → α i)) (i : ι) :
                    Trunc.finChoiceEquiv.symm q i = Trunc.map (fun (x : (i : ι) → α i) => x i) q
                    @[simp]
                    theorem Trunc.finChoiceEquiv_apply {ι : Type u_1} [DecidableEq ι] [Fintype ι] {α : ιSort u_2} (q : (i : ι) → Trunc (α i)) :
                    Trunc.finChoiceEquiv q = Trunc.finChoice q
                    def Trunc.finRecOn {ι : Type u_1} [DecidableEq ι] [Fintype ι] {α : ιSort u_2} {C : ((i : ι) → Trunc (α i))Sort u_4} (q : (i : ι) → Trunc (α i)) (f : (a : (i : ι) → α i) → C fun (x : ι) => Trunc.mk (a x)) (h : ∀ (a b : (i : ι) → α i), f a = f b) :
                    C q

                    Recursion principle for Truncs indexed by a finite type.

                    Equations
                    Instances For
                      @[simp]
                      theorem Trunc.finRecOn_mk {ι : Type u_1} [DecidableEq ι] [Fintype ι] {α : ιSort u_2} {C : ((i : ι) → Trunc (α i))Sort u_4} (a : (i : ι) → α i) :
                      (Trunc.finRecOn fun (x : ι) => a x) = fun (f : (a : (i : ι) → α i) → C fun (x : ι) => Trunc.mk (a x)) (x : ∀ (a b : (i : ι) → α i), f a = f b) => f a