HepLean Documentation

Mathlib.Data.List.Perm.Basic

List Permutations #

This file develops theory about the List.Perm relation.

Notation #

The notation ~ is used for permutation equivalence.

instance List.instTransPerm_mathlib {α : Type u_1} :
Trans List.Perm List.Perm List.Perm
Equations
  • List.instTransPerm_mathlib = { trans := }
theorem List.perm_rfl {α : Type u_1} {l : List α} :
l.Perm l
theorem List.Perm.subset_congr_left {α : Type u_1} {l₁ l₂ l₃ : List α} (h : l₁.Perm l₂) :
l₁ l₃ l₂ l₃
theorem List.Perm.subset_congr_right {α : Type u_1} {l₁ l₂ l₃ : List α} (h : l₁.Perm l₂) :
l₃ l₁ l₃ l₂
theorem List.perm_comp_perm {α : Type u_1} :
Relation.Comp List.Perm List.Perm = List.Perm
theorem List.perm_comp_forall₂ {α : Type u_1} {β : Type u_2} {r : αβProp} {l u : List α} {v : List β} (hlu : l.Perm u) (huv : List.Forall₂ r u v) :
Relation.Comp (List.Forall₂ r) List.Perm l v
theorem List.forall₂_comp_perm_eq_perm_comp_forall₂ {α : Type u_1} {β : Type u_2} {r : αβProp} :
theorem List.rel_perm_imp {α : Type u_1} {β : Type u_2} {r : αβProp} (hr : Relator.RightUnique r) :
(List.Forall₂ r List.Forall₂ r fun (x1 x2 : Prop) => x1x2) List.Perm List.Perm
theorem List.rel_perm {α : Type u_1} {β : Type u_2} {r : αβProp} (hr : Relator.BiUnique r) :
(List.Forall₂ r List.Forall₂ r fun (x1 x2 : Prop) => x1 x2) List.Perm List.Perm
theorem List.count_eq_count_filter_add {α : Type u_1} [DecidableEq α] (P : αProp) [DecidablePred P] (l : List α) (a : α) :
List.count a l = List.count a (List.filter (fun (b : α) => decide (P b)) l) + List.count a (List.filter (fun (x : α) => decide ¬P x) l)
theorem List.Perm.foldl_eq {α : Type u_1} {β : Type u_2} {f : βαβ} {l₁ l₂ : List α} [rcomm : RightCommutative f] (p : l₁.Perm l₂) (b : β) :
List.foldl f b l₁ = List.foldl f b l₂
theorem List.Perm.foldr_eq {α : Type u_1} {β : Type u_2} {f : αββ} {l₁ l₂ : List α} [lcomm : LeftCommutative f] (p : l₁.Perm l₂) (b : β) :
List.foldr f b l₁ = List.foldr f b l₂
theorem List.Perm.foldl_op_eq {α : Type u_1} {op : ααα} [IA : Std.Associative op] [IC : Std.Commutative op] {l₁ l₂ : List α} {a : α} (h : l₁.Perm l₂) :
List.foldl op a l₁ = List.foldl op a l₂
theorem List.Perm.foldr_op_eq {α : Type u_1} {op : ααα} [IA : Std.Associative op] [IC : Std.Commutative op] {l₁ l₂ : List α} {a : α} (h : l₁.Perm l₂) :
List.foldr op a l₁ = List.foldr op a l₂
@[deprecated List.Perm.foldl_op_eq]
theorem List.Perm.fold_op_eq {α : Type u_1} {op : ααα} [IA : Std.Associative op] [IC : Std.Commutative op] {l₁ l₂ : List α} {a : α} (h : l₁.Perm l₂) :
List.foldl op a l₁ = List.foldl op a l₂

Alias of List.Perm.foldl_op_eq.

theorem List.perm_option_toList {α : Type u_1} {o₁ o₂ : Option α} :
o₁.toList.Perm o₂.toList o₁ = o₂
@[deprecated List.perm_option_toList]
theorem List.perm_option_to_list {α : Type u_1} {o₁ o₂ : Option α} :
o₁.toList.Perm o₂.toList o₁ = o₂

Alias of List.perm_option_toList.

theorem List.perm_replicate_append_replicate {α : Type u_1} [DecidableEq α] {l : List α} {a b : α} {m n : } (h : a b) :
l.Perm (List.replicate m a ++ List.replicate n b) List.count a l = m List.count b l = n l [a, b]
theorem List.Perm.flatMap_left {α : Type u_1} {β : Type u_2} (l : List α) {f g : αList β} (h : ∀ (a : α), a l(f a).Perm (g a)) :
(l.flatMap f).Perm (l.flatMap g)
@[deprecated List.Perm.flatMap_left]
theorem List.Perm.bind_left {α : Type u_1} {β : Type u_2} (l : List α) {f g : αList β} (h : ∀ (a : α), a l(f a).Perm (g a)) :
(l.flatMap f).Perm (l.flatMap g)

Alias of List.Perm.flatMap_left.

theorem List.flatMap_append_perm {α : Type u_1} {β : Type u_2} (l : List α) (f g : αList β) :
(l.flatMap f ++ l.flatMap g).Perm (l.flatMap fun (x : α) => f x ++ g x)
@[deprecated List.flatMap_append_perm]
theorem List.bind_append_perm {α : Type u_1} {β : Type u_2} (l : List α) (f g : αList β) :
(l.flatMap f ++ l.flatMap g).Perm (l.flatMap fun (x : α) => f x ++ g x)

Alias of List.flatMap_append_perm.

theorem List.map_append_flatMap_perm {α : Type u_1} {β : Type u_2} (l : List α) (f : αβ) (g : αList β) :
(List.map f l ++ l.flatMap g).Perm (l.flatMap fun (x : α) => f x :: g x)
@[deprecated List.map_append_flatMap_perm]
theorem List.map_append_bind_perm {α : Type u_1} {β : Type u_2} (l : List α) (f : αβ) (g : αList β) :
(List.map f l ++ l.flatMap g).Perm (l.flatMap fun (x : α) => f x :: g x)

Alias of List.map_append_flatMap_perm.

theorem List.Perm.product_right {α : Type u_1} {β : Type u_2} {l₁ l₂ : List α} (t₁ : List β) (p : l₁.Perm l₂) :
(l₁.product t₁).Perm (l₂.product t₁)
theorem List.Perm.product_left {α : Type u_1} {β : Type u_2} (l : List α) {t₁ t₂ : List β} (p : t₁.Perm t₂) :
(l.product t₁).Perm (l.product t₂)
theorem List.Perm.product {α : Type u_1} {β : Type u_2} {l₁ l₂ : List α} {t₁ t₂ : List β} (p₁ : l₁.Perm l₂) (p₂ : t₁.Perm t₂) :
(l₁.product t₁).Perm (l₂.product t₂)
theorem List.perm_lookmap {α : Type u_1} (f : αOption α) {l₁ l₂ : List α} (H : List.Pairwise (fun (a b : α) => ∀ (c : α), c f a∀ (d : α), d f ba = b c = d) l₁) (p : l₁.Perm l₂) :
(List.lookmap f l₁).Perm (List.lookmap f l₂)