HepLean Documentation

Mathlib.Data.Nat.WithBot

WithBot #

Lemmas about the type of natural numbers with a bottom element adjoined.

theorem Nat.WithBot.add_eq_zero_iff {n : WithBot } {m : WithBot } :
n + m = 0 n = 0 m = 0
theorem Nat.WithBot.add_eq_one_iff {n : WithBot } {m : WithBot } :
n + m = 1 n = 0 m = 1 n = 1 m = 0
theorem Nat.WithBot.add_eq_two_iff {n : WithBot } {m : WithBot } :
n + m = 2 n = 0 m = 2 n = 1 m = 1 n = 2 m = 0
theorem Nat.WithBot.add_eq_three_iff {n : WithBot } {m : WithBot } :
n + m = 3 n = 0 m = 3 n = 1 m = 2 n = 2 m = 1 n = 3 m = 0
theorem Nat.WithBot.coe_nonneg {n : } :
0 n
@[simp]
theorem Nat.WithBot.add_one_le_of_lt {n : WithBot } {m : WithBot } (h : n < m) :
n + 1 m