HepLean Documentation

Mathlib.Data.Set.Pointwise.BigOperators

Results about pointwise operations on sets and big operators. #

theorem Set.image_list_sum {α : Type u_2} {β : Type u_3} {F : Type u_4} [FunLike F α β] [AddMonoid α] [AddMonoid β] [AddMonoidHomClass F α β] (f : F) (l : List (Set α)) :
f '' l.sum = (List.map (fun (s : Set α) => f '' s) l).sum
theorem Set.image_list_prod {α : Type u_2} {β : Type u_3} {F : Type u_4} [FunLike F α β] [Monoid α] [Monoid β] [MonoidHomClass F α β] (f : F) (l : List (Set α)) :
f '' l.prod = (List.map (fun (s : Set α) => f '' s) l).prod
theorem Set.image_multiset_sum {α : Type u_2} {β : Type u_3} {F : Type u_4} [FunLike F α β] [AddCommMonoid α] [AddCommMonoid β] [AddMonoidHomClass F α β] (f : F) (m : Multiset (Set α)) :
f '' m.sum = (Multiset.map (fun (s : Set α) => f '' s) m).sum
theorem Set.image_multiset_prod {α : Type u_2} {β : Type u_3} {F : Type u_4} [FunLike F α β] [CommMonoid α] [CommMonoid β] [MonoidHomClass F α β] (f : F) (m : Multiset (Set α)) :
f '' m.prod = (Multiset.map (fun (s : Set α) => f '' s) m).prod
theorem Set.image_finset_sum {ι : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [FunLike F α β] [AddCommMonoid α] [AddCommMonoid β] [AddMonoidHomClass F α β] (f : F) (m : Finset ι) (s : ιSet α) :
f '' im, s i = im, f '' s i
theorem Set.image_finset_prod {ι : Type u_1} {α : Type u_2} {β : Type u_3} {F : Type u_4} [FunLike F α β] [CommMonoid α] [CommMonoid β] [MonoidHomClass F α β] (f : F) (m : Finset ι) (s : ιSet α) :
f '' im, s i = im, f '' s i
theorem Set.mem_finset_sum {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] (t : Finset ι) (f : ιSet α) (a : α) :
a it, f i ∃ (g : ια) (_ : ∀ {i : ι}, i tg i f i), it, g i = a

The n-ary version of Set.mem_add.

theorem Set.mem_finset_prod {ι : Type u_1} {α : Type u_2} [CommMonoid α] (t : Finset ι) (f : ιSet α) (a : α) :
a it, f i ∃ (g : ια) (_ : ∀ {i : ι}, i tg i f i), it, g i = a

The n-ary version of Set.mem_mul.

theorem Set.mem_fintype_sum {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] [Fintype ι] (f : ιSet α) (a : α) :
a i : ι, f i ∃ (g : ια) (_ : ∀ (i : ι), g i f i), i : ι, g i = a

A version of Set.mem_finset_sum with a simpler RHS for sums over a Fintype.

theorem Set.mem_fintype_prod {ι : Type u_1} {α : Type u_2} [CommMonoid α] [Fintype ι] (f : ιSet α) (a : α) :
a i : ι, f i ∃ (g : ια) (_ : ∀ (i : ι), g i f i), i : ι, g i = a

A version of Set.mem_finset_prod with a simpler RHS for products over a Fintype.

theorem Set.list_sum_mem_list_sum {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] (t : List ι) (f : ιSet α) (g : ια) (hg : it, g i f i) :
(List.map g t).sum (List.map f t).sum

An n-ary version of Set.add_mem_add.

theorem Set.list_prod_mem_list_prod {ι : Type u_1} {α : Type u_2} [CommMonoid α] (t : List ι) (f : ιSet α) (g : ια) (hg : it, g i f i) :
(List.map g t).prod (List.map f t).prod

An n-ary version of Set.mul_mem_mul.

theorem Set.list_sum_subset_list_sum {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] (t : List ι) (f₁ : ιSet α) (f₂ : ιSet α) (hf : it, f₁ i f₂ i) :
(List.map f₁ t).sum (List.map f₂ t).sum

An n-ary version of Set.add_subset_add.

theorem Set.list_prod_subset_list_prod {ι : Type u_1} {α : Type u_2} [CommMonoid α] (t : List ι) (f₁ : ιSet α) (f₂ : ιSet α) (hf : it, f₁ i f₂ i) :
(List.map f₁ t).prod (List.map f₂ t).prod

An n-ary version of Set.mul_subset_mul.

theorem Set.list_sum_singleton {M : Type u_5} [AddCommMonoid M] (s : List M) :
(List.map (fun (i : M) => {i}) s).sum = {s.sum}
theorem Set.list_prod_singleton {M : Type u_5} [CommMonoid M] (s : List M) :
(List.map (fun (i : M) => {i}) s).prod = {s.prod}
theorem Set.multiset_sum_mem_multiset_sum {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] (t : Multiset ι) (f : ιSet α) (g : ια) (hg : it, g i f i) :
(Multiset.map g t).sum (Multiset.map f t).sum

An n-ary version of Set.add_mem_add.

theorem Set.multiset_prod_mem_multiset_prod {ι : Type u_1} {α : Type u_2} [CommMonoid α] (t : Multiset ι) (f : ιSet α) (g : ια) (hg : it, g i f i) :
(Multiset.map g t).prod (Multiset.map f t).prod

An n-ary version of Set.mul_mem_mul.

theorem Set.multiset_sum_subset_multiset_sum {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] (t : Multiset ι) (f₁ : ιSet α) (f₂ : ιSet α) (hf : it, f₁ i f₂ i) :
(Multiset.map f₁ t).sum (Multiset.map f₂ t).sum

An n-ary version of Set.add_subset_add.

theorem Set.multiset_prod_subset_multiset_prod {ι : Type u_1} {α : Type u_2} [CommMonoid α] (t : Multiset ι) (f₁ : ιSet α) (f₂ : ιSet α) (hf : it, f₁ i f₂ i) :
(Multiset.map f₁ t).prod (Multiset.map f₂ t).prod

An n-ary version of Set.mul_subset_mul.

theorem Set.multiset_sum_singleton {M : Type u_5} [AddCommMonoid M] (s : Multiset M) :
(Multiset.map (fun (i : M) => {i}) s).sum = {s.sum}
theorem Set.multiset_prod_singleton {M : Type u_5} [CommMonoid M] (s : Multiset M) :
(Multiset.map (fun (i : M) => {i}) s).prod = {s.prod}
theorem Set.finset_sum_mem_finset_sum {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] (t : Finset ι) (f : ιSet α) (g : ια) (hg : it, g i f i) :
it, g i it, f i

An n-ary version of Set.add_mem_add.

theorem Set.finset_prod_mem_finset_prod {ι : Type u_1} {α : Type u_2} [CommMonoid α] (t : Finset ι) (f : ιSet α) (g : ια) (hg : it, g i f i) :
it, g i it, f i

An n-ary version of Set.mul_mem_mul.

theorem Set.finset_sum_subset_finset_sum {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] (t : Finset ι) (f₁ : ιSet α) (f₂ : ιSet α) (hf : it, f₁ i f₂ i) :
it, f₁ i it, f₂ i

An n-ary version of Set.add_subset_add.

theorem Set.finset_prod_subset_finset_prod {ι : Type u_1} {α : Type u_2} [CommMonoid α] (t : Finset ι) (f₁ : ιSet α) (f₂ : ιSet α) (hf : it, f₁ i f₂ i) :
it, f₁ i it, f₂ i

An n-ary version of Set.mul_subset_mul.

theorem Set.finset_sum_singleton {M : Type u_5} {ι : Type u_6} [AddCommMonoid M] (s : Finset ι) (I : ιM) :
is, {I i} = {is, I i}
theorem Set.finset_prod_singleton {M : Type u_5} {ι : Type u_6} [CommMonoid M] (s : Finset ι) (I : ιM) :
is, {I i} = {is, I i}
theorem Set.image_finset_sum_pi {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] (l : Finset ι) (S : ιSet α) :
(fun (f : ια) => il, f i) '' (↑l).pi S = il, S i

The n-ary version of Set.add_image_prod.

theorem Set.image_finset_prod_pi {ι : Type u_1} {α : Type u_2} [CommMonoid α] (l : Finset ι) (S : ιSet α) :
(fun (f : ια) => il, f i) '' (↑l).pi S = il, S i

The n-ary version of Set.image_mul_prod.

theorem Set.image_fintype_sum_pi {ι : Type u_1} {α : Type u_2} [AddCommMonoid α] [Fintype ι] (S : ιSet α) :
(fun (f : ια) => i : ι, f i) '' Set.univ.pi S = i : ι, S i

A special case of Set.image_finset_sum_pi for Finset.univ.

theorem Set.image_fintype_prod_pi {ι : Type u_1} {α : Type u_2} [CommMonoid α] [Fintype ι] (S : ιSet α) :
(fun (f : ια) => i : ι, f i) '' Set.univ.pi S = i : ι, S i

A special case of Set.image_finset_prod_pi for Finset.univ.

TODO: define decidable_mem_finset_prod and decidable_mem_finset_sum.