HepLean Documentation

Mathlib.GroupTheory.Congruence.Opposite

Congruences on the opposite of a group #

This file defines the order isomorphism between the congruences on a group G and the congruences on the opposite group Gᵒᵖ.

def Con.op {M : Type u_1} [Mul M] (c : Con M) :

If c is a multiplicative congruence on M, then (a, b) ↦ c b.unop a.unop is a multiplicative congruence on Mᵐᵒᵖ

Equations
Instances For
    def AddCon.op {M : Type u_1} [Add M] (c : AddCon M) :

    If c is an additive congruence on M, then (a, b) ↦ c b.unop a.unop is an additive congruence on Mᵃᵒᵖ

    Equations
    Instances For
      def Con.unop {M : Type u_1} [Mul M] (c : Con Mᵐᵒᵖ) :
      Con M

      If c is a multiplicative congruence on Mᵐᵒᵖ, then (a, b) ↦ c bᵒᵖ aᵒᵖ is a multiplicative congruence on M

      Equations
      Instances For
        def AddCon.unop {M : Type u_1} [Add M] (c : AddCon Mᵃᵒᵖ) :

        If c is an additive congruence on Mᵃᵒᵖ, then (a, b) ↦ c bᵒᵖ aᵒᵖ is an additive congruence on M

        Equations
        Instances For
          def Con.orderIsoOp {M : Type u_1} [Mul M] :

          The multiplicative congruences on M bijects to the multiplicative congruences on Mᵐᵒᵖ

          Equations
          • Con.orderIsoOp = { toFun := Con.op, invFun := Con.unop, left_inv := , right_inv := , map_rel_iff' := }
          Instances For

            The additive congruences on M bijects to the additive congruences on Mᵃᵒᵖ

            Equations
            • AddCon.orderIsoOp = { toFun := AddCon.op, invFun := AddCon.unop, left_inv := , right_inv := , map_rel_iff' := }
            Instances For
              @[simp]
              theorem Con.orderIsoOp_apply {M : Type u_1} [Mul M] (c : Con M) :
              Con.orderIsoOp c = c.op
              @[simp]
              theorem Con.orderIsoOp_symm_apply {M : Type u_1} [Mul M] (c : Con Mᵐᵒᵖ) :
              (RelIso.symm Con.orderIsoOp) c = c.unop
              @[simp]
              theorem AddCon.orderIsoOp_symm_apply {M : Type u_1} [Add M] (c : AddCon Mᵃᵒᵖ) :
              (RelIso.symm AddCon.orderIsoOp) c = c.unop
              @[simp]
              theorem AddCon.orderIsoOp_apply {M : Type u_1} [Add M] (c : AddCon M) :
              AddCon.orderIsoOp c = c.op