Congruences on the opposite of a group #
This file defines the order isomorphism between the congruences on a group G
and the congruences
on the opposite group Gᵒᵖ
.
theorem
AddCon.op.proof_1
{M : Type u_1}
[Add M]
(c : AddCon M)
:
Equivalence fun (a b : Mᵃᵒᵖ) => c (AddOpposite.unop b) (AddOpposite.unop a)
theorem
AddCon.op.proof_2
{M : Type u_1}
[Add M]
(c : AddCon M)
:
∀ {w x y z : Mᵃᵒᵖ},
{ r := fun (a b : Mᵃᵒᵖ) => c (AddOpposite.unop b) (AddOpposite.unop a), iseqv := ⋯ } w x →
{ r := fun (a b : Mᵃᵒᵖ) => c (AddOpposite.unop b) (AddOpposite.unop a), iseqv := ⋯ } y z →
c (AddOpposite.unop z + AddOpposite.unop x) (AddOpposite.unop y + AddOpposite.unop w)
theorem
AddCon.unop.proof_1
{M : Type u_1}
[Add M]
(c : AddCon Mᵃᵒᵖ)
:
Equivalence fun (a b : M) => c (AddOpposite.op b) (AddOpposite.op a)
If c
is an additive congruence on Mᵃᵒᵖ
, then (a, b) ↦ c bᵒᵖ aᵒᵖ
is an additive
congruence on M
Equations
- c.unop = { r := fun (a b : M) => c (AddOpposite.op b) (AddOpposite.op a), iseqv := ⋯, add' := ⋯ }
Instances For
theorem
AddCon.unop.proof_2
{M : Type u_1}
[Add M]
(c : AddCon Mᵃᵒᵖ)
:
∀ {w x y z : M},
{ r := fun (a b : M) => c (AddOpposite.op b) (AddOpposite.op a), iseqv := ⋯ } w x →
{ r := fun (a b : M) => c (AddOpposite.op b) (AddOpposite.op a), iseqv := ⋯ } y z →
c ({ unop' := z } + { unop' := x }) ({ unop' := y } + { unop' := w })
If c
is a multiplicative congruence on Mᵐᵒᵖ
, then (a, b) ↦ c bᵒᵖ aᵒᵖ
is a multiplicative
congruence on M
Equations
- c.unop = { r := fun (a b : M) => c (MulOpposite.op b) (MulOpposite.op a), iseqv := ⋯, mul' := ⋯ }
Instances For
@[simp]
theorem
AddCon.orderIsoOp_symm_apply
{M : Type u_1}
[Add M]
(c : AddCon Mᵃᵒᵖ)
:
(RelIso.symm AddCon.orderIsoOp) c = c.unop
@[simp]
theorem
Con.orderIsoOp_symm_apply
{M : Type u_1}
[Mul M]
(c : Con Mᵐᵒᵖ)
:
(RelIso.symm Con.orderIsoOp) c = c.unop