HepLean Documentation

Mathlib.GroupTheory.MonoidLocalization.Away

Localizing commutative monoids away from an alement #

We treat the special case of localizing away from an element in the sections AwayMap and Away.

Tags #

localization, monoid localization, quotient monoid, congruence relation, characteristic predicate, commutative monoid, grothendieck group

@[reducible, inline]
abbrev AddSubmonoid.LocalizationMap.AwayMap {M : Type u_1} [AddCommMonoid M] (x : M) (N' : Type u_4) [AddCommMonoid N'] :
Type (max u_1 u_4)

Given x : M, the type of AddCommMonoid homomorphisms f : M →+ N such that N is isomorphic to the localization of M at the AddSubmonoid generated by x.

Equations
Instances For
    @[reducible, inline]
    abbrev Submonoid.LocalizationMap.AwayMap {M : Type u_1} [CommMonoid M] (x : M) (N' : Type u_4) [CommMonoid N'] :
    Type (max u_1 u_4)

    Given x : M, the type of CommMonoid homomorphisms f : M →* N such that N is isomorphic to the Localization of M at the Submonoid generated by x.

    Equations
    Instances For
      noncomputable def Submonoid.LocalizationMap.AwayMap.invSelf {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] (x : M) (F : Submonoid.LocalizationMap.AwayMap x N) :
      N

      Given x : M and a Localization map F : M →* N away from x, invSelf is (F x)⁻¹.

      Equations
      Instances For
        noncomputable def Submonoid.LocalizationMap.AwayMap.lift {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] {g : M →* P} (x : M) (F : Submonoid.LocalizationMap.AwayMap x N) (hg : IsUnit (g x)) :
        N →* P

        Given x : M, a Localization map F : M →* N away from x, and a map of CommMonoids g : M →* P such that g x is invertible, the homomorphism induced from N to P sending z : N to g y * (g x)⁻ⁿ, where y : M, n : ℕ are such that z = F y * (F x)⁻ⁿ.

        Equations
        Instances For
          @[simp]
          theorem Submonoid.LocalizationMap.AwayMap.lift_eq {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] {g : M →* P} (x : M) (F : Submonoid.LocalizationMap.AwayMap x N) (hg : IsUnit (g x)) (a : M) :
          noncomputable def Submonoid.LocalizationMap.awayToAwayRight {M : Type u_1} [CommMonoid M] {N : Type u_2} [CommMonoid N] {P : Type u_3} [CommMonoid P] (x : M) (F : Submonoid.LocalizationMap.AwayMap x N) (y : M) (G : Submonoid.LocalizationMap.AwayMap (x * y) P) :
          N →* P

          Given x y : M and Localization maps F : M →* N, G : M →* P away from x and x * y respectively, the homomorphism induced from N to P.

          Equations
          Instances For

            Given x : A and a Localization map F : A →+ B away from x, neg_self is - (F x).

            Equations
            Instances For
              noncomputable def AddSubmonoid.LocalizationMap.AwayMap.lift {A : Type u_4} [AddCommMonoid A] (x : A) {B : Type u_5} [AddCommMonoid B] (F : AddSubmonoid.LocalizationMap.AwayMap x B) {C : Type u_6} [AddCommMonoid C] {g : A →+ C} (hg : IsAddUnit (g x)) :
              B →+ C

              Given x : A, a localization map F : A →+ B away from x, and a map of AddCommMonoids g : A →+ C such that g x is invertible, the homomorphism induced from B to C sending z : B to g y - n • g x, where y : A, n : ℕ are such that z = F y - n • F x.

              Equations
              Instances For
                noncomputable def AddSubmonoid.LocalizationMap.awayToAwayRight {A : Type u_4} [AddCommMonoid A] (x : A) {B : Type u_5} [AddCommMonoid B] (F : AddSubmonoid.LocalizationMap.AwayMap x B) {C : Type u_6} [AddCommMonoid C] (y : A) (G : AddSubmonoid.LocalizationMap.AwayMap (x + y) C) :
                B →+ C

                Given x y : A and Localization maps F : A →+ B, G : A →+ C away from x and x + y respectively, the homomorphism induced from B to C.

                Equations
                Instances For
                  @[reducible, inline]
                  abbrev AddLocalization.Away {M : Type u_1} [AddCommMonoid M] (x : M) :
                  Type u_1

                  Given x : M, the Localization of M at the Submonoid generated by x, as a quotient.

                  Equations
                  Instances For
                    @[reducible, inline]
                    abbrev Localization.Away {M : Type u_1} [CommMonoid M] (x : M) :
                    Type u_1

                    Given x : M, the Localization of M at the Submonoid generated by x, as a quotient.

                    Equations
                    Instances For

                      Given x : M, negSelf is -x in the Localization (as a quotient type) of M at the Submonoid generated by x.

                      Equations
                      Instances For

                        Given x : M, invSelf is x⁻¹ in the Localization (as a quotient type) of M at the Submonoid generated by x.

                        Equations
                        Instances For
                          @[reducible, inline]

                          Given x : M, the natural hom sending y : M, M an AddCommMonoid, to the equivalence class of (y, 0) in the Localization of M at the Submonoid generated by x.

                          Equations
                          Instances For
                            @[reducible, inline]

                            Given x : M, the natural hom sending y : M, M a CommMonoid, to the equivalence class of (y, 1) in the Localization of M at the Submonoid generated by x.

                            Equations
                            Instances For

                              Given x : M and a Localization map f : M →+ N away from x, we get an isomorphism between the Localization of M at the Submonoid generated by x as a quotient type and N.

                              Equations
                              Instances For

                                Given x : M and a Localization map f : M →* N away from x, we get an isomorphism between the Localization of M at the Submonoid generated by x as a quotient type and N.

                                Equations
                                Instances For