Simple groups #
This file defines IsSimpleGroup G
, a class indicating that a group has exactly two normal
subgroups.
Main definitions #
IsSimpleGroup G
, a class indicating that a group has exactly two normal subgroups.
Tags #
subgroup, subgroups
An AddGroup
is simple when it has exactly two normal AddSubgroup
s.
- exists_pair_ne : ∃ (x : A) (y : A), x ≠ y
Any normal additive subgroup is either
⊥
or⊤
Instances
theorem
IsSimpleAddGroup.eq_bot_or_eq_top_of_normal
{A : Type u_2}
:
∀ {inst : AddGroup A} [self : IsSimpleAddGroup A] (H : AddSubgroup A), H.Normal → H = ⊥ ∨ H = ⊤
Any normal additive subgroup is either ⊥
or ⊤
theorem
AddSubgroup.Normal.eq_bot_or_eq_top
{G : Type u_1}
[AddGroup G]
[IsSimpleAddGroup G]
{H : AddSubgroup G}
(Hn : H.Normal)
:
instance
IsSimpleAddGroup.instIsSimpleOrderAddSubgroup
{C : Type u_3}
[AddCommGroup C]
[IsSimpleAddGroup C]
:
Equations
- ⋯ = ⋯
Equations
- ⋯ = ⋯
theorem
IsSimpleAddGroup.isSimpleAddGroup_of_surjective
{G : Type u_1}
[AddGroup G]
{H : Type u_3}
[AddGroup H]
[IsSimpleAddGroup G]
[Nontrivial H]
(f : G →+ H)
(hf : Function.Surjective ⇑f)
:
theorem
IsSimpleGroup.isSimpleGroup_of_surjective
{G : Type u_1}
[Group G]
{H : Type u_3}
[Group H]
[IsSimpleGroup G]
[Nontrivial H]
(f : G →* H)
(hf : Function.Surjective ⇑f)
: