HepLean Documentation

Mathlib.LinearAlgebra.Matrix.Polynomial

Matrices of polynomials and polynomials of matrices #

In this file, we prove results about matrices over a polynomial ring. In particular, we give results about the polynomial given by det (t * I + A).

References #

Tags #

matrix determinant, polynomial

theorem Polynomial.natDegree_det_X_add_C_le {n : Type u_1} {α : Type u_2} [DecidableEq n] [Fintype n] [CommRing α] (A : Matrix n n α) (B : Matrix n n α) :
(Polynomial.X A.map Polynomial.C + B.map Polynomial.C).det.natDegree Fintype.card n
theorem Polynomial.coeff_det_X_add_C_zero {n : Type u_1} {α : Type u_2} [DecidableEq n] [Fintype n] [CommRing α] (A : Matrix n n α) (B : Matrix n n α) :
(Polynomial.X A.map Polynomial.C + B.map Polynomial.C).det.coeff 0 = B.det
theorem Polynomial.coeff_det_X_add_C_card {n : Type u_1} {α : Type u_2} [DecidableEq n] [Fintype n] [CommRing α] (A : Matrix n n α) (B : Matrix n n α) :
(Polynomial.X A.map Polynomial.C + B.map Polynomial.C).det.coeff (Fintype.card n) = A.det
theorem Polynomial.leadingCoeff_det_X_one_add_C {n : Type u_1} {α : Type u_2} [DecidableEq n] [Fintype n] [CommRing α] (A : Matrix n n α) :
(Polynomial.X 1 + A.map Polynomial.C).det.leadingCoeff = 1