HepLean Documentation

Mathlib.MeasureTheory.Function.LpSeminorm.ChebyshevMarkov

Chebyshev-Markov inequality in terms of Lp seminorms #

In this file we formulate several versions of the Chebyshev-Markov inequality in terms of the MeasureTheory.eLpNorm seminorm.

theorem MeasureTheory.pow_mul_meas_ge_le_eLpNorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
(ε * μ {x : α | ε f x‖₊ ^ p.toReal}) ^ (1 / p.toReal) MeasureTheory.eLpNorm f p μ
@[deprecated MeasureTheory.pow_mul_meas_ge_le_eLpNorm]
theorem MeasureTheory.pow_mul_meas_ge_le_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
(ε * μ {x : α | ε f x‖₊ ^ p.toReal}) ^ (1 / p.toReal) MeasureTheory.eLpNorm f p μ

Alias of MeasureTheory.pow_mul_meas_ge_le_eLpNorm.

theorem MeasureTheory.mul_meas_ge_le_pow_eLpNorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
ε * μ {x : α | ε f x‖₊ ^ p.toReal} MeasureTheory.eLpNorm f p μ ^ p.toReal
@[deprecated MeasureTheory.mul_meas_ge_le_pow_eLpNorm]
theorem MeasureTheory.mul_meas_ge_le_pow_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
ε * μ {x : α | ε f x‖₊ ^ p.toReal} MeasureTheory.eLpNorm f p μ ^ p.toReal

Alias of MeasureTheory.mul_meas_ge_le_pow_eLpNorm.

theorem MeasureTheory.mul_meas_ge_le_pow_eLpNorm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
ε ^ p.toReal * μ {x : α | ε f x‖₊} MeasureTheory.eLpNorm f p μ ^ p.toReal

A version of Chebyshev-Markov's inequality using Lp-norms.

@[deprecated MeasureTheory.mul_meas_ge_le_pow_eLpNorm']
theorem MeasureTheory.mul_meas_ge_le_pow_snorm' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) (ε : ENNReal) :
ε ^ p.toReal * μ {x : α | ε f x‖₊} MeasureTheory.eLpNorm f p μ ^ p.toReal

Alias of MeasureTheory.mul_meas_ge_le_pow_eLpNorm'.


A version of Chebyshev-Markov's inequality using Lp-norms.

theorem MeasureTheory.meas_ge_le_mul_pow_eLpNorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) {ε : ENNReal} (hε : ε 0) :
μ {x : α | ε f x‖₊} ε⁻¹ ^ p.toReal * MeasureTheory.eLpNorm f p μ ^ p.toReal
@[deprecated MeasureTheory.meas_ge_le_mul_pow_eLpNorm]
theorem MeasureTheory.meas_ge_le_mul_pow_snorm {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} (μ : MeasureTheory.Measure α) {f : αE} (hp_ne_zero : p 0) (hp_ne_top : p ) (hf : MeasureTheory.AEStronglyMeasurable f μ) {ε : ENNReal} (hε : ε 0) :
μ {x : α | ε f x‖₊} ε⁻¹ ^ p.toReal * MeasureTheory.eLpNorm f p μ ^ p.toReal

Alias of MeasureTheory.meas_ge_le_mul_pow_eLpNorm.

theorem MeasureTheory.Memℒp.meas_ge_lt_top' {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} {f : αE} {μ : MeasureTheory.Measure α} (hℒp : MeasureTheory.Memℒp f p μ) (hp_ne_zero : p 0) (hp_ne_top : p ) {ε : ENNReal} (hε : ε 0) :
μ {x : α | ε f x‖₊} <
theorem MeasureTheory.Memℒp.meas_ge_lt_top {α : Type u_1} {E : Type u_2} {m0 : MeasurableSpace α} [NormedAddCommGroup E] {p : ENNReal} {f : αE} {μ : MeasureTheory.Measure α} (hℒp : MeasureTheory.Memℒp f p μ) (hp_ne_zero : p 0) (hp_ne_top : p ) {ε : NNReal} (hε : ε 0) :
μ {x : α | ε f x‖₊} <