HepLean Documentation

Mathlib.Order.CompleteBooleanAlgebra

Frames, completely distributive lattices and complete Boolean algebras #

In this file we define and provide API for (co)frames, completely distributive lattices and complete Boolean algebras.

We distinguish two different distributivity properties:

  1. inf_iSup_eq : (a ⊓ ⨆ i, f i) = ⨆ i, a ⊓ f i (finite distributes over infinite ). This is required by Frame, CompleteDistribLattice, and CompleteBooleanAlgebra (Coframe, etc., require the dual property).
  2. iInf_iSup_eq : (⨅ i, ⨆ j, f i j) = ⨆ s, ⨅ i, f i (s i) (infinite distributes over infinite ). This stronger property is called "completely distributive", and is required by CompletelyDistribLattice and CompleteAtomicBooleanAlgebra.

Typeclasses #

A set of opens gives rise to a topological space precisely if it forms a frame. Such a frame is also completely distributive, but not all frames are. Filter is a coframe but not a completely distributive lattice.

References #

class Order.Frame.MinimalAxioms (α : Type u) extends CompleteLattice α :

Structure containing the minimal axioms required to check that an order is a frame. Do NOT use, except for implementing Order.Frame via Order.Frame.ofMinimalAxioms.

This structure omits the himp, compl fields, which can be recovered using Order.Frame.ofMinimalAxioms.

Instances

    Structure containing the minimal axioms required to check that an order is a coframe. Do NOT use, except for implementing Order.Coframe via Order.Coframe.ofMinimalAxioms.

    This structure omits the sdiff, hnot fields, which can be recovered using Order.Coframe.ofMinimalAxioms.

    Instances
      class Order.Frame (α : Type u_1) extends CompleteLattice α, HeytingAlgebra α :
      Type u_1

      A frame, aka complete Heyting algebra, is a complete lattice whose distributes over .

      Instances
        class Order.Coframe (α : Type u_1) extends CompleteLattice α, CoheytingAlgebra α :
        Type u_1

        A coframe, aka complete Brouwer algebra or complete co-Heyting algebra, is a complete lattice whose distributes over .

        Instances

          Structure containing the minimal axioms required to check that an order is a complete distributive lattice. Do NOT use, except for implementing CompleteDistribLattice via CompleteDistribLattice.ofMinimalAxioms.

          This structure omits the himp, compl, sdiff, hnot fields, which can be recovered using CompleteDistribLattice.ofMinimalAxioms.

          Instances For

            A complete distributive lattice is a complete lattice whose and respectively distribute over and .

            Instances

              Structure containing the minimal axioms required to check that an order is a completely distributive. Do NOT use, except for implementing CompletelyDistribLattice via CompletelyDistribLattice.ofMinimalAxioms.

              This structure omits the himp, compl, sdiff, hnot fields, which can be recovered using CompletelyDistribLattice.ofMinimalAxioms.

              Instances For

                A completely distributive lattice is a complete lattice whose and distribute over each other.

                Instances
                  theorem le_iInf_iSup {α : Type u} {ι : Sort w} {κ : ιSort w'} [CompleteLattice α] {f : (a : ι) → κ aα} :
                  ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a) ⨅ (a : ι), ⨆ (b : κ a), f a b
                  theorem iSup_iInf_le {α : Type u} {ι : Sort w} {κ : ιSort w'} [CompleteLattice α] {f : (a : ι) → κ aα} :
                  ⨆ (a : ι), ⨅ (b : κ a), f a b ⨅ (g : (a : ι) → κ a), ⨆ (a : ι), f a (g a)
                  theorem Order.Frame.MinimalAxioms.inf_sSup_eq {α : Type u} (minAx : Order.Frame.MinimalAxioms α) {s : Set α} {a : α} :
                  a sSup s = bs, a b
                  theorem Order.Frame.MinimalAxioms.sSup_inf_eq {α : Type u} (minAx : Order.Frame.MinimalAxioms α) {s : Set α} {b : α} :
                  sSup s b = as, a b
                  theorem Order.Frame.MinimalAxioms.iSup_inf_eq {α : Type u} {ι : Sort w} (minAx : Order.Frame.MinimalAxioms α) (f : ια) (a : α) :
                  (⨆ (i : ι), f i) a = ⨆ (i : ι), f i a
                  theorem Order.Frame.MinimalAxioms.inf_iSup_eq {α : Type u} {ι : Sort w} (minAx : Order.Frame.MinimalAxioms α) (a : α) (f : ια) :
                  a ⨆ (i : ι), f i = ⨆ (i : ι), a f i
                  theorem Order.Frame.MinimalAxioms.inf_iSup₂_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} (minAx : Order.Frame.MinimalAxioms α) {f : (i : ι) → κ iα} (a : α) :
                  a ⨆ (i : ι), ⨆ (j : κ i), f i j = ⨆ (i : ι), ⨆ (j : κ i), a f i j

                  The Order.Frame.MinimalAxioms element corresponding to a frame.

                  Equations
                  Instances For
                    @[reducible, inline]

                    Construct a frame instance using the minimal amount of work needed.

                    This sets a ⇨ b := sSup {c | c ⊓ a ≤ b} and aᶜ := a ⇨ ⊥.

                    Equations
                    Instances For
                      theorem Order.Coframe.MinimalAxioms.sup_sInf_eq {α : Type u} (minAx : Order.Coframe.MinimalAxioms α) {s : Set α} {a : α} :
                      a sInf s = bs, a b
                      theorem Order.Coframe.MinimalAxioms.sInf_sup_eq {α : Type u} (minAx : Order.Coframe.MinimalAxioms α) {s : Set α} {b : α} :
                      sInf s b = as, a b
                      theorem Order.Coframe.MinimalAxioms.iInf_sup_eq {α : Type u} {ι : Sort w} (minAx : Order.Coframe.MinimalAxioms α) (f : ια) (a : α) :
                      (⨅ (i : ι), f i) a = ⨅ (i : ι), f i a
                      theorem Order.Coframe.MinimalAxioms.sup_iInf_eq {α : Type u} {ι : Sort w} (minAx : Order.Coframe.MinimalAxioms α) (a : α) (f : ια) :
                      a ⨅ (i : ι), f i = ⨅ (i : ι), a f i
                      theorem Order.Coframe.MinimalAxioms.sup_iInf₂_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} (minAx : Order.Coframe.MinimalAxioms α) {f : (i : ι) → κ iα} (a : α) :
                      a ⨅ (i : ι), ⨅ (j : κ i), f i j = ⨅ (i : ι), ⨅ (j : κ i), a f i j

                      The Order.Coframe.MinimalAxioms element corresponding to a frame.

                      Equations
                      Instances For
                        @[reducible, inline]

                        Construct a coframe instance using the minimal amount of work needed.

                        This sets a \ b := sInf {c | a ≤ b ⊔ c} and ¬a := ⊤ \ a.

                        Equations
                        Instances For

                          The CompleteDistribLattice.MinimalAxioms element corresponding to a complete distrib lattice.

                          Equations
                          • CompleteDistribLattice.MinimalAxioms.of = { toCompleteLattice := Order.Frame.toCompleteLattice, inf_sSup_le_iSup_inf := , iInf_sup_le_sup_sInf := }
                          Instances For
                            @[reducible, inline]

                            Turn minimal axioms for CompleteDistribLattice into minimal axioms for Order.Frame.

                            Equations
                            • minAx.toFrame = minAx.toMinimalAxioms
                            Instances For
                              @[reducible, inline]

                              Turn minimal axioms for CompleteDistribLattice into minimal axioms for Order.Coframe.

                              Equations
                              Instances For
                                @[reducible, inline]

                                Construct a complete distrib lattice instance using the minimal amount of work needed.

                                This sets a ⇨ b := sSup {c | c ⊓ a ≤ b}, aᶜ := a ⇨ ⊥, a \ b := sInf {c | a ≤ b ⊔ c} and ¬a := ⊤ \ a.

                                Equations
                                Instances For
                                  theorem CompletelyDistribLattice.MinimalAxioms.iInf_iSup_eq' {α : Type u} {ι : Sort w} {κ : ιSort w'} (minAx : CompletelyDistribLattice.MinimalAxioms α) (f : (a : ι) → κ aα) :
                                  let x := minAx.toCompleteLattice; ⨅ (i : ι), ⨆ (j : κ i), f i j = ⨆ (g : (i : ι) → κ i), ⨅ (i : ι), f i (g i)
                                  theorem CompletelyDistribLattice.MinimalAxioms.iSup_iInf_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} (minAx : CompletelyDistribLattice.MinimalAxioms α) (f : (i : ι) → κ iα) :
                                  let x := minAx.toCompleteLattice; ⨆ (i : ι), ⨅ (j : κ i), f i j = ⨅ (g : (i : ι) → κ i), ⨆ (i : ι), f i (g i)
                                  @[reducible, inline]

                                  Turn minimal axioms for CompletelyDistribLattice into minimal axioms for CompleteDistribLattice.

                                  Equations
                                  • minAx.toCompleteDistribLattice = { toCompleteLattice := minAx.toCompleteLattice, inf_sSup_le_iSup_inf := , iInf_sup_le_sup_sInf := }
                                  Instances For

                                    The CompletelyDistribLattice.MinimalAxioms element corresponding to a frame.

                                    Equations
                                    • CompletelyDistribLattice.MinimalAxioms.of = { toCompleteLattice := CompletelyDistribLattice.toCompleteLattice, iInf_iSup_eq := }
                                    Instances For
                                      @[reducible, inline]

                                      Construct a completely distributive lattice instance using the minimal amount of work needed.

                                      This sets a ⇨ b := sSup {c | c ⊓ a ≤ b}, aᶜ := a ⇨ ⊥, a \ b := sInf {c | a ≤ b ⊔ c} and ¬a := ⊤ \ a.

                                      Equations
                                      Instances For
                                        theorem iInf_iSup_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [CompletelyDistribLattice α] {f : (a : ι) → κ aα} :
                                        ⨅ (a : ι), ⨆ (b : κ a), f a b = ⨆ (g : (a : ι) → κ a), ⨅ (a : ι), f a (g a)
                                        theorem iSup_iInf_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [CompletelyDistribLattice α] {f : (a : ι) → κ aα} :
                                        ⨆ (a : ι), ⨅ (b : κ a), f a b = ⨅ (g : (a : ι) → κ a), ⨆ (a : ι), f a (g a)
                                        @[instance 100]
                                        Equations
                                        @[instance 100]
                                        Equations
                                        Equations
                                        theorem inf_sSup_eq {α : Type u} [Order.Frame α] {s : Set α} {a : α} :
                                        a sSup s = bs, a b
                                        theorem sSup_inf_eq {α : Type u} [Order.Frame α] {s : Set α} {b : α} :
                                        sSup s b = as, a b
                                        theorem iSup_inf_eq {α : Type u} {ι : Sort w} [Order.Frame α] (f : ια) (a : α) :
                                        (⨆ (i : ι), f i) a = ⨆ (i : ι), f i a
                                        theorem inf_iSup_eq {α : Type u} {ι : Sort w} [Order.Frame α] (a : α) (f : ια) :
                                        a ⨆ (i : ι), f i = ⨆ (i : ι), a f i
                                        theorem iSup₂_inf_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Frame α] {f : (i : ι) → κ iα} (a : α) :
                                        (⨆ (i : ι), ⨆ (j : κ i), f i j) a = ⨆ (i : ι), ⨆ (j : κ i), f i j a
                                        theorem inf_iSup₂_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Frame α] {f : (i : ι) → κ iα} (a : α) :
                                        a ⨆ (i : ι), ⨆ (j : κ i), f i j = ⨆ (i : ι), ⨆ (j : κ i), a f i j
                                        theorem iSup_inf_iSup {α : Type u} [Order.Frame α] {ι : Type u_1} {ι' : Type u_2} {f : ια} {g : ι'α} :
                                        (⨆ (i : ι), f i) ⨆ (j : ι'), g j = ⨆ (i : ι × ι'), f i.1 g i.2
                                        theorem biSup_inf_biSup {α : Type u} [Order.Frame α] {ι : Type u_1} {ι' : Type u_2} {f : ια} {g : ι'α} {s : Set ι} {t : Set ι'} :
                                        (⨆ is, f i) jt, g j = ps ×ˢ t, f p.1 g p.2
                                        theorem sSup_inf_sSup {α : Type u} [Order.Frame α] {s t : Set α} :
                                        sSup s sSup t = ps ×ˢ t, p.1 p.2
                                        theorem iSup_disjoint_iff {α : Type u} {ι : Sort w} [Order.Frame α] {a : α} {f : ια} :
                                        Disjoint (⨆ (i : ι), f i) a ∀ (i : ι), Disjoint (f i) a
                                        theorem disjoint_iSup_iff {α : Type u} {ι : Sort w} [Order.Frame α] {a : α} {f : ια} :
                                        Disjoint a (⨆ (i : ι), f i) ∀ (i : ι), Disjoint a (f i)
                                        theorem iSup₂_disjoint_iff {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Frame α] {a : α} {f : (i : ι) → κ iα} :
                                        Disjoint (⨆ (i : ι), ⨆ (j : κ i), f i j) a ∀ (i : ι) (j : κ i), Disjoint (f i j) a
                                        theorem disjoint_iSup₂_iff {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Frame α] {a : α} {f : (i : ι) → κ iα} :
                                        Disjoint a (⨆ (i : ι), ⨆ (j : κ i), f i j) ∀ (i : ι) (j : κ i), Disjoint a (f i j)
                                        theorem sSup_disjoint_iff {α : Type u} [Order.Frame α] {a : α} {s : Set α} :
                                        Disjoint (sSup s) a bs, Disjoint b a
                                        theorem disjoint_sSup_iff {α : Type u} [Order.Frame α] {a : α} {s : Set α} :
                                        Disjoint a (sSup s) bs, Disjoint a b
                                        theorem iSup_inf_of_monotone {α : Type u} [Order.Frame α] {ι : Type u_1} [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {f g : ια} (hf : Monotone f) (hg : Monotone g) :
                                        ⨆ (i : ι), f i g i = (⨆ (i : ι), f i) ⨆ (i : ι), g i
                                        theorem iSup_inf_of_antitone {α : Type u} [Order.Frame α] {ι : Type u_1} [Preorder ι] [IsDirected ι (Function.swap fun (x1 x2 : ι) => x1 x2)] {f g : ια} (hf : Antitone f) (hg : Antitone g) :
                                        ⨆ (i : ι), f i g i = (⨆ (i : ι), f i) ⨆ (i : ι), g i
                                        @[instance 100]
                                        Equations
                                        instance Prod.instFrame {α : Type u} {β : Type v} [Order.Frame α] [Order.Frame β] :
                                        Order.Frame (α × β)
                                        Equations
                                        instance Pi.instFrame {ι : Type u_1} {π : ιType u_2} [(i : ι) → Order.Frame (π i)] :
                                        Order.Frame ((i : ι) → π i)
                                        Equations
                                        Equations
                                        theorem sup_sInf_eq {α : Type u} [Order.Coframe α] {s : Set α} {a : α} :
                                        a sInf s = bs, a b
                                        theorem sInf_sup_eq {α : Type u} [Order.Coframe α] {s : Set α} {b : α} :
                                        sInf s b = as, a b
                                        theorem iInf_sup_eq {α : Type u} {ι : Sort w} [Order.Coframe α] (f : ια) (a : α) :
                                        (⨅ (i : ι), f i) a = ⨅ (i : ι), f i a
                                        theorem sup_iInf_eq {α : Type u} {ι : Sort w} [Order.Coframe α] (a : α) (f : ια) :
                                        a ⨅ (i : ι), f i = ⨅ (i : ι), a f i
                                        theorem iInf₂_sup_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Coframe α] {f : (i : ι) → κ iα} (a : α) :
                                        (⨅ (i : ι), ⨅ (j : κ i), f i j) a = ⨅ (i : ι), ⨅ (j : κ i), f i j a
                                        theorem sup_iInf₂_eq {α : Type u} {ι : Sort w} {κ : ιSort w'} [Order.Coframe α] {f : (i : ι) → κ iα} (a : α) :
                                        a ⨅ (i : ι), ⨅ (j : κ i), f i j = ⨅ (i : ι), ⨅ (j : κ i), a f i j
                                        theorem iInf_sup_iInf {α : Type u} [Order.Coframe α] {ι : Type u_1} {ι' : Type u_2} {f : ια} {g : ι'α} :
                                        (⨅ (i : ι), f i) ⨅ (i : ι'), g i = ⨅ (i : ι × ι'), f i.1 g i.2
                                        theorem biInf_sup_biInf {α : Type u} [Order.Coframe α] {ι : Type u_1} {ι' : Type u_2} {f : ια} {g : ι'α} {s : Set ι} {t : Set ι'} :
                                        (⨅ is, f i) jt, g j = ps ×ˢ t, f p.1 g p.2
                                        theorem sInf_sup_sInf {α : Type u} [Order.Coframe α] {s t : Set α} :
                                        sInf s sInf t = ps ×ˢ t, p.1 p.2
                                        theorem iInf_sup_of_monotone {α : Type u} [Order.Coframe α] {ι : Type u_1} [Preorder ι] [IsDirected ι (Function.swap fun (x1 x2 : ι) => x1 x2)] {f g : ια} (hf : Monotone f) (hg : Monotone g) :
                                        ⨅ (i : ι), f i g i = (⨅ (i : ι), f i) ⨅ (i : ι), g i
                                        theorem iInf_sup_of_antitone {α : Type u} [Order.Coframe α] {ι : Type u_1} [Preorder ι] [IsDirected ι fun (x1 x2 : ι) => x1 x2] {f g : ια} (hf : Antitone f) (hg : Antitone g) :
                                        ⨅ (i : ι), f i g i = (⨅ (i : ι), f i) ⨅ (i : ι), g i
                                        @[instance 100]
                                        Equations
                                        instance Prod.instCoframe {α : Type u} {β : Type v} [Order.Coframe α] [Order.Coframe β] :
                                        Equations
                                        instance Pi.instCoframe {ι : Type u_1} {π : ιType u_2} [(i : ι) → Order.Coframe (π i)] :
                                        Order.Coframe ((i : ι) → π i)
                                        Equations
                                        Equations
                                        Equations
                                        instance Pi.instCompleteDistribLattice {ι : Type u_1} {π : ιType u_2} [(i : ι) → CompleteDistribLattice (π i)] :
                                        CompleteDistribLattice ((i : ι) → π i)
                                        Equations
                                        Equations
                                        Equations
                                        instance Pi.instCompletelyDistribLattice {ι : Type u_1} {π : ιType u_2} [(i : ι) → CompletelyDistribLattice (π i)] :
                                        CompletelyDistribLattice ((i : ι) → π i)
                                        Equations
                                        class CompleteBooleanAlgebra (α : Type u_1) extends CompleteLattice α, BooleanAlgebra α :
                                        Type u_1

                                        A complete Boolean algebra is a Boolean algebra that is also a complete distributive lattice.

                                        It is only completely distributive if it is also atomic.

                                        Instances
                                          @[instance 100]
                                          Equations
                                          Equations
                                          instance Pi.instCompleteBooleanAlgebra {ι : Type u_1} {π : ιType u_2} [(i : ι) → CompleteBooleanAlgebra (π i)] :
                                          CompleteBooleanAlgebra ((i : ι) → π i)
                                          Equations
                                          Equations
                                          theorem compl_iInf {α : Type u} {ι : Sort w} [CompleteBooleanAlgebra α] {f : ια} :
                                          (iInf f) = ⨆ (i : ι), (f i)
                                          theorem compl_iSup {α : Type u} {ι : Sort w} [CompleteBooleanAlgebra α] {f : ια} :
                                          (iSup f) = ⨅ (i : ι), (f i)
                                          theorem compl_sInf {α : Type u} [CompleteBooleanAlgebra α] {s : Set α} :
                                          (sInf s) = is, i
                                          theorem compl_sSup {α : Type u} [CompleteBooleanAlgebra α] {s : Set α} :
                                          (sSup s) = is, i
                                          theorem compl_sInf' {α : Type u} [CompleteBooleanAlgebra α] {s : Set α} :
                                          (sInf s) = sSup (compl '' s)
                                          theorem compl_sSup' {α : Type u} [CompleteBooleanAlgebra α] {s : Set α} :
                                          (sSup s) = sInf (compl '' s)
                                          theorem iSup_symmDiff_iSup_le {α : Type u} {ι : Sort w} [CompleteBooleanAlgebra α] {f g : ια} :
                                          symmDiff (⨆ (i : ι), f i) (⨆ (i : ι), g i) ⨆ (i : ι), symmDiff (f i) (g i)

                                          The symmetric difference of two iSups is at most the iSup of the symmetric differences.

                                          theorem biSup_symmDiff_biSup_le {α : Type u} {ι : Sort w} [CompleteBooleanAlgebra α] {p : ιProp} {f g : (i : ι) → p iα} :
                                          symmDiff (⨆ (i : ι), ⨆ (h : p i), f i h) (⨆ (i : ι), ⨆ (h : p i), g i h) ⨆ (i : ι), ⨆ (h : p i), symmDiff (f i h) (g i h)

                                          A biSup version of iSup_symmDiff_iSup_le.

                                          A complete atomic Boolean algebra is a complete Boolean algebra that is also completely distributive.

                                          We take iSup_iInf_eq as the definition here, and prove later on that this implies atomicity.

                                          Instances
                                            @[instance 100]
                                            Equations
                                            @[instance 100]
                                            Equations
                                            Equations
                                            instance Pi.instCompleteAtomicBooleanAlgebra {ι : Type u_1} {π : ιType u_2} [(i : ι) → CompleteAtomicBooleanAlgebra (π i)] :
                                            CompleteAtomicBooleanAlgebra ((i : ι) → π i)
                                            Equations
                                            Equations
                                            @[reducible, inline]
                                            abbrev Function.Injective.frameMinimalAxioms {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] (minAx : Order.Frame.MinimalAxioms β) (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) :

                                            Pullback an Order.Frame.MinimalAxioms along an injection.

                                            Equations
                                            Instances For
                                              @[reducible, inline]
                                              abbrev Function.Injective.coframeMinimalAxioms {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] (minAx : Order.Coframe.MinimalAxioms β) (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) :

                                              Pullback an Order.Coframe.MinimalAxioms along an injection.

                                              Equations
                                              Instances For
                                                @[reducible, inline]
                                                abbrev Function.Injective.frame {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HasCompl α] [HImp α] [Order.Frame β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) :

                                                Pullback an Order.Frame along an injection.

                                                Equations
                                                Instances For
                                                  @[reducible, inline]
                                                  abbrev Function.Injective.coframe {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HNot α] [SDiff α] [Order.Coframe β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_hnot : ∀ (a : α), f (a) = f a) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                                  Pullback an Order.Coframe along an injection.

                                                  Equations
                                                  Instances For
                                                    @[reducible, inline]
                                                    abbrev Function.Injective.completeDistribLatticeMinimalAxioms {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] (minAx : CompleteDistribLattice.MinimalAxioms β) (f : αβ) (hf : Function.Injective f) (map_sup : let x := minAx.toCompleteLattice; ∀ (a b : α), f (a b) = f a f b) (map_inf : let x := minAx.toCompleteLattice; ∀ (a b : α), f (a b) = f a f b) (map_sSup : let x := minAx.toCompleteLattice; ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : let x := minAx.toCompleteLattice; ∀ (s : Set α), f (sInf s) = as, f a) (map_top : let x := minAx.toCompleteLattice; f = ) (map_bot : let x := minAx.toCompleteLattice; f = ) :

                                                    Pullback a CompleteDistribLattice.MinimalAxioms along an injection.

                                                    Equations
                                                    • One or more equations did not get rendered due to their size.
                                                    Instances For
                                                      @[reducible, inline]
                                                      abbrev Function.Injective.completeDistribLattice {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HasCompl α] [HImp α] [HNot α] [SDiff α] [CompleteDistribLattice β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) (map_hnot : ∀ (a : α), f (a) = f a) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                                      Pullback a CompleteDistribLattice along an injection.

                                                      Equations
                                                      Instances For
                                                        @[reducible, inline]
                                                        abbrev Function.Injective.completelyDistribLatticeMinimalAxioms {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] (minAx : CompletelyDistribLattice.MinimalAxioms β) (f : αβ) (hf : Function.Injective f) (map_sup : let x := minAx.toCompleteLattice; ∀ (a b : α), f (a b) = f a f b) (map_inf : let x := minAx.toCompleteLattice; ∀ (a b : α), f (a b) = f a f b) (map_sSup : let x := minAx.toCompleteLattice; ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : let x := minAx.toCompleteLattice; ∀ (s : Set α), f (sInf s) = as, f a) (map_top : let x := minAx.toCompleteLattice; f = ) (map_bot : let x := minAx.toCompleteLattice; f = ) :

                                                        Pullback a CompletelyDistribLattice.MinimalAxioms along an injection.

                                                        Equations
                                                        • One or more equations did not get rendered due to their size.
                                                        Instances For
                                                          @[reducible, inline]
                                                          abbrev Function.Injective.completelyDistribLattice {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HasCompl α] [HImp α] [HNot α] [SDiff α] [CompletelyDistribLattice β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) (map_hnot : ∀ (a : α), f (a) = f a) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                                          Pullback a CompletelyDistribLattice along an injection.

                                                          Equations
                                                          Instances For
                                                            @[reducible, inline]
                                                            abbrev Function.Injective.completeBooleanAlgebra {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HasCompl α] [HImp α] [SDiff α] [CompleteBooleanAlgebra β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                                            Pullback a CompleteBooleanAlgebra along an injection.

                                                            Equations
                                                            Instances For
                                                              @[reducible, inline]
                                                              abbrev Function.Injective.completeAtomicBooleanAlgebra {α : Type u} {β : Type v} [Max α] [Min α] [SupSet α] [InfSet α] [Top α] [Bot α] [HasCompl α] [HImp α] [HNot α] [SDiff α] [CompleteAtomicBooleanAlgebra β] (f : αβ) (hf : Function.Injective f) (map_sup : ∀ (a b : α), f (a b) = f a f b) (map_inf : ∀ (a b : α), f (a b) = f a f b) (map_sSup : ∀ (s : Set α), f (sSup s) = as, f a) (map_sInf : ∀ (s : Set α), f (sInf s) = as, f a) (map_top : f = ) (map_bot : f = ) (map_compl : ∀ (a : α), f a = (f a)) (map_himp : ∀ (a b : α), f (a b) = f a f b) (map_hnot : ∀ (a : α), f (a) = f a) (map_sdiff : ∀ (a b : α), f (a \ b) = f a \ f b) :

                                                              Pullback a CompleteAtomicBooleanAlgebra along an injection.

                                                              Equations
                                                              Instances For