HepLean Documentation

Mathlib.Order.Filter.AtTopBot.BigOperators

Two lemmas about limit of Π b ∈ s, f b along #

In this file we prove two auxiliary lemmas about Filter.atTop : Filter (Finset _) and ∏ b ∈ s, f b. These lemmas are useful to build the theory of absolutely convergent series.

theorem Filter.map_atTop_finset_sum_le_of_sum_eq {α : Type u_1} {β : Type u_2} {M : Type u_3} [AddCommMonoid M] {f : αM} {g : βM} (h_eq : ∀ (u : Finset β), ∃ (v : Finset α), ∀ (v' : Finset α), v v'∃ (u' : Finset β), u u' xu', g x = bv', f b) :
Filter.map (fun (s : Finset α) => bs, f b) Filter.atTop Filter.map (fun (s : Finset β) => xs, g x) Filter.atTop

Let f and g be two maps to the same commutative additive monoid. This lemma gives a sufficient condition for comparison of the filter atTop.map (fun s ↦ ∑ b ∈ s, f b) with atTop.map (fun s ↦ ∑ b ∈ s, g b). This is useful to compare the set of limit points of ∑ b ∈ s, f b as s → atTop with the similar set for g.

theorem Filter.map_atTop_finset_prod_le_of_prod_eq {α : Type u_1} {β : Type u_2} {M : Type u_3} [CommMonoid M] {f : αM} {g : βM} (h_eq : ∀ (u : Finset β), ∃ (v : Finset α), ∀ (v' : Finset α), v v'∃ (u' : Finset β), u u' xu', g x = bv', f b) :
Filter.map (fun (s : Finset α) => bs, f b) Filter.atTop Filter.map (fun (s : Finset β) => xs, g x) Filter.atTop

Let f and g be two maps to the same commutative monoid. This lemma gives a sufficient condition for comparison of the filter atTop.map (fun s ↦ ∏ b ∈ s, f b) with atTop.map (fun s ↦ ∏ b ∈ s, g b). This is useful to compare the set of limit points of Π b in s, f b as s → atTop with the similar set for g.

theorem Function.Injective.map_atTop_finset_sum_eq {α : Type u_1} {β : Type u_2} {M : Type u_3} [AddCommMonoid M] {g : αβ} (hg : Function.Injective g) {f : βM} (hf : xSet.range g, f x = 0) :
Filter.map (fun (s : Finset α) => is, f (g i)) Filter.atTop = Filter.map (fun (s : Finset β) => is, f i) Filter.atTop

Let g : γ → β be an injective function and f : β → α be a function from the codomain of g to an additive commutative monoid. Suppose that f x = 0 outside of the range of g. Then the filters atTop.map (fun s ↦ ∑ i ∈ s, f (g i)) and atTop.map (fun s ↦ ∑ i ∈ s, f i) coincide.

This lemma is used to prove the equality ∑' x, f (g x) = ∑' y, f y under the same assumptions.

theorem Function.Injective.map_atTop_finset_prod_eq {α : Type u_1} {β : Type u_2} {M : Type u_3} [CommMonoid M] {g : αβ} (hg : Function.Injective g) {f : βM} (hf : xSet.range g, f x = 1) :
Filter.map (fun (s : Finset α) => is, f (g i)) Filter.atTop = Filter.map (fun (s : Finset β) => is, f i) Filter.atTop

Let g : γ → β be an injective function and f : β → α be a function from the codomain of g to a commutative monoid. Suppose that f x = 1 outside of the range of g. Then the filters atTop.map (fun s ↦ ∏ i ∈ s, f (g i)) and atTop.map (fun s ↦ ∏ i ∈ s, f i) coincide.

The additive version of this lemma is used to prove the equality ∑' x, f (g x) = ∑' y, f y under the same assumptions.