HepLean Documentation

Mathlib.RingTheory.Ideal.IsPrimary

Primary ideals #

A proper ideal I is primary iff xy ∈ I implies x ∈ I or y ∈ radical I.

Main definitions #

Implementation details #

Uses a specialized phrasing of Submodule.IsPrimary to have better API-piercing usage.

@[reducible, inline]
abbrev Ideal.IsPrimary {R : Type u_1} [CommSemiring R] (I : Ideal R) :

A proper ideal I is primary as a submodule.

Equations
Instances For
    theorem Ideal.isPrimary_iff {R : Type u_1} [CommSemiring R] {I : Ideal R} :
    I.IsPrimary I ∀ {x y : R}, x * y Ix I y I.radical

    A proper ideal I is primary iff xy ∈ I implies x ∈ I or y ∈ radical I.

    theorem Ideal.IsPrime.isPrimary {R : Type u_1} [CommSemiring R] {I : Ideal R} (hi : I.IsPrime) :
    I.IsPrimary
    theorem Ideal.isPrime_radical {R : Type u_1} [CommSemiring R] {I : Ideal R} (hi : I.IsPrimary) :
    I.radical.IsPrime
    theorem Ideal.isPrimary_inf {R : Type u_1} [CommSemiring R] {I : Ideal R} {J : Ideal R} (hi : I.IsPrimary) (hj : J.IsPrimary) (hij : I.radical = J.radical) :
    (I J).IsPrimary
    theorem Ideal.isPrimary_finset_inf {R : Type u_1} [CommSemiring R] {ι : Type u_2} {s : Finset ι} {f : ιIdeal R} {i : ι} (hi : i s) (hs : ∀ ⦃y : ι⦄, y s(f y).IsPrimary) (hs' : ∀ ⦃y : ι⦄, y s(f y).radical = (f i).radical) :
    (s.inf f).IsPrimary