HepLean Documentation

Mathlib.RingTheory.Ideal.Nonunits

The set of non-invertible elements of a monoid #

Main definitions #

Main results #

def nonunits (α : Type u_4) [Monoid α] :
Set α

The set of non-invertible elements of a monoid.

Equations
Instances For
    @[simp]
    theorem mem_nonunits_iff {α : Type u_2} {a : α} [Monoid α] :
    theorem mul_mem_nonunits_right {α : Type u_2} {a b : α} [CommMonoid α] :
    b nonunits αa * b nonunits α
    theorem mul_mem_nonunits_left {α : Type u_2} {a b : α} [CommMonoid α] :
    a nonunits αa * b nonunits α
    theorem zero_mem_nonunits {α : Type u_2} [Semiring α] :
    0 nonunits α 0 1
    @[simp]
    theorem one_not_mem_nonunits {α : Type u_2} [Monoid α] :
    1nonunits α
    @[simp]
    theorem map_mem_nonunits_iff {F : Type u_1} {α : Type u_2} {β : Type u_3} [Monoid α] [Monoid β] [FunLike F α β] [MonoidHomClass F α β] (f : F) [IsLocalHom f] (a : α) :
    theorem coe_subset_nonunits {α : Type u_2} [Semiring α] {I : Ideal α} (h : I ) :
    I nonunits α
    theorem exists_max_ideal_of_mem_nonunits {α : Type u_2} {a : α} [CommSemiring α] (h : a nonunits α) :
    ∃ (I : Ideal α), I.IsMaximal a I