HepLean Documentation

Mathlib.RingTheory.IntegralClosure.Algebra.Defs

Integral algebras #

Main definitions #

Let R be a CommRing and let A be an R-algebra.

class Algebra.IsIntegral (R : Type u_1) (A : Type u_3) [CommRing R] [Ring A] [Algebra R A] :

An algebra is integral if every element of the extension is integral over the base ring.

Instances
    theorem Algebra.IsIntegral.isIntegral {R : Type u_1} {A : Type u_3} :
    ∀ {inst : CommRing R} {inst_1 : Ring A} {inst_2 : Algebra R A} [self : Algebra.IsIntegral R A] (x : A), IsIntegral R x
    theorem Algebra.isIntegral_def {R : Type u_1} {A : Type u_3} [CommRing R] [Ring A] [Algebra R A] :
    Algebra.IsIntegral R A ∀ (x : A), IsIntegral R x