HepLean Documentation

Mathlib.Tactic.CategoryTheory.Coherence.Basic

The Core function for monoidal and bicategory tactics #

This file provides the function BicategoryLike.main for proving equalities in monoidal categories and bicategories. Using main, we will define the following tactics:

The main first normalizes the both sides using eval, then compares the corresponding components. It closes the goal at non-structural parts with rfl and the goal at structural parts by pureCoherence.

theorem Mathlib.Tactic.BicategoryLike.mk_eq {α : Type u_1} (a : α) (b : α) (a' : α) (b' : α) (ha : a = a') (hb : b = b') (h : a' = b') :
a = b
theorem Mathlib.Tactic.BicategoryLike.mk_eq_of_cons {C : Type u} [CategoryTheory.CategoryStruct.{v, u} C] {f₁ : C} {f₂ : C} {f₃ : C} {f₄ : C} (α : f₁ f₂) (α' : f₁ f₂) (η : f₂ f₃) (η' : f₂ f₃) (ηs : f₃ f₄) (ηs' : f₃ f₄) (e_α : α = α') (e_η : η = η') (e_ηs : ηs = ηs') :

Split the goal α ≫ η ≫ ηs = α' ≫ η' ≫ ηs' into α = α', η = η', and ηs = ηs'.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    List.splitEvenOdd [0, 1, 2, 3, 4] = ([0, 2, 4], [1, 3])

    Equations
    Instances For