HepLean Documentation

Mathlib.Topology.Algebra.InfiniteSum.Field

Infinite sums and products in topological fields #

Lemmas on topological sums in fields (as opposed to groups).

theorem HasProd.norm {α : Type u_1} {E : Type u_2} [NormedField E] {f : αE} {x : E} (hfx : HasProd f x) :
HasProd (fun (x : α) => f x) x
theorem Multipliable.norm {α : Type u_1} {E : Type u_2} [NormedField E] {f : αE} (hf : Multipliable f) :
Multipliable fun (x : α) => f x
theorem norm_tprod {α : Type u_1} {E : Type u_2} [NormedField E] {f : αE} (hf : Multipliable f) :
∏' (i : α), f i = ∏' (i : α), f i