HepLean Documentation

Mathlib.Topology.Order.Monotone

Monotone functions on an order topology #

This file contains lemmas about limits and continuity for monotone / antitone functions on linearly-ordered sets (with the order topology). For example, we prove that a monotone function has left and right limits at any point (Monotone.tendsto_nhdsWithin_Iio, Monotone.tendsto_nhdsWithin_Ioi).

theorem MonotoneOn.map_csSup_of_continuousWithinAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousWithinAt f A (sSup A)) (Mf : MonotoneOn f A) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddAbove A) _auto✝) :
f (sSup A) = sSup (f '' A)

A monotone function continuous at the supremum of a nonempty set sends this supremum to the supremum of the image of this set.

theorem Monotone.map_csSup_of_continuousAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousAt f (sSup A)) (Mf : Monotone f) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddAbove A) _auto✝) :
f (sSup A) = sSup (f '' A)

A monotone function continuous at the supremum of a nonempty set sends this supremum to the supremum of the image of this set.

@[deprecated Monotone.map_csSup_of_continuousAt]
theorem Monotone.map_sSup_of_continuousAt' {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousAt f (sSup A)) (Mf : Monotone f) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddAbove A) _auto✝) :
f (sSup A) = sSup (f '' A)

Alias of Monotone.map_csSup_of_continuousAt.


A monotone function continuous at the supremum of a nonempty set sends this supremum to the supremum of the image of this set.

theorem Monotone.map_ciSup_of_continuousAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} [Nonempty ι] {f : αβ} {g : ια} (Cf : ContinuousAt f (iSup g)) (Mf : Monotone f) (bdd : autoParam (BddAbove (Set.range g)) _auto✝) :
f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i)

A monotone function continuous at the indexed supremum over a nonempty Sort sends this indexed supremum to the indexed supremum of the composition.

@[deprecated Monotone.map_ciSup_of_continuousAt]
theorem Monotone.map_iSup_of_continuousAt' {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} [Nonempty ι] {f : αβ} {g : ια} (Cf : ContinuousAt f (iSup g)) (Mf : Monotone f) (bdd : autoParam (BddAbove (Set.range g)) _auto✝) :
f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i)

Alias of Monotone.map_ciSup_of_continuousAt.


A monotone function continuous at the indexed supremum over a nonempty Sort sends this indexed supremum to the indexed supremum of the composition.

theorem MonotoneOn.map_csInf_of_continuousWithinAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousWithinAt f A (sInf A)) (Mf : MonotoneOn f A) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddBelow A) _auto✝) :
f (sInf A) = sInf (f '' A)

A monotone function continuous at the infimum of a nonempty set sends this infimum to the infimum of the image of this set.

theorem Monotone.map_csInf_of_continuousAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousAt f (sInf A)) (Mf : Monotone f) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddBelow A) _auto✝) :
f (sInf A) = sInf (f '' A)

A monotone function continuous at the infimum of a nonempty set sends this infimum to the infimum of the image of this set.

@[deprecated Monotone.map_csInf_of_continuousAt]
theorem Monotone.map_sInf_of_continuousAt' {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousAt f (sInf A)) (Mf : Monotone f) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddBelow A) _auto✝) :
f (sInf A) = sInf (f '' A)

Alias of Monotone.map_csInf_of_continuousAt.


A monotone function continuous at the infimum of a nonempty set sends this infimum to the infimum of the image of this set.

theorem Monotone.map_ciInf_of_continuousAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} [Nonempty ι] {f : αβ} {g : ια} (Cf : ContinuousAt f (iInf g)) (Mf : Monotone f) (bdd : autoParam (BddBelow (Set.range g)) _auto✝) :
f (⨅ (i : ι), g i) = ⨅ (i : ι), f (g i)

A monotone function continuous at the indexed infimum over a nonempty Sort sends this indexed infimum to the indexed infimum of the composition.

@[deprecated Monotone.map_ciInf_of_continuousAt]
theorem Monotone.map_iInf_of_continuousAt' {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} [Nonempty ι] {f : αβ} {g : ια} (Cf : ContinuousAt f (iInf g)) (Mf : Monotone f) (bdd : autoParam (BddBelow (Set.range g)) _auto✝) :
f (⨅ (i : ι), g i) = ⨅ (i : ι), f (g i)

Alias of Monotone.map_ciInf_of_continuousAt.


A monotone function continuous at the indexed infimum over a nonempty Sort sends this indexed infimum to the indexed infimum of the composition.

theorem AntitoneOn.map_csInf_of_continuousWithinAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousWithinAt f A (sInf A)) (Af : AntitoneOn f A) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddBelow A) _auto✝) :
f (sInf A) = sSup (f '' A)

An antitone function continuous at the infimum of a nonempty set sends this infimum to the supremum of the image of this set.

theorem Antitone.map_csInf_of_continuousAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousAt f (sInf A)) (Af : Antitone f) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddBelow A) _auto✝) :
f (sInf A) = sSup (f '' A)

An antitone function continuous at the infimum of a nonempty set sends this infimum to the supremum of the image of this set.

@[deprecated Antitone.map_csInf_of_continuousAt]
theorem Antitone.map_sInf_of_continuousAt' {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousAt f (sInf A)) (Af : Antitone f) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddBelow A) _auto✝) :
f (sInf A) = sSup (f '' A)

Alias of Antitone.map_csInf_of_continuousAt.


An antitone function continuous at the infimum of a nonempty set sends this infimum to the supremum of the image of this set.

theorem Antitone.map_ciInf_of_continuousAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} [Nonempty ι] {f : αβ} {g : ια} (Cf : ContinuousAt f (iInf g)) (Af : Antitone f) (bdd : autoParam (BddBelow (Set.range g)) _auto✝) :
f (⨅ (i : ι), g i) = ⨆ (i : ι), f (g i)

An antitone function continuous at the indexed infimum over a nonempty Sort sends this indexed infimum to the indexed supremum of the composition.

@[deprecated Antitone.map_ciInf_of_continuousAt]
theorem Antitone.map_iInf_of_continuousAt' {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} [Nonempty ι] {f : αβ} {g : ια} (Cf : ContinuousAt f (iInf g)) (Af : Antitone f) (bdd : autoParam (BddBelow (Set.range g)) _auto✝) :
f (⨅ (i : ι), g i) = ⨆ (i : ι), f (g i)

Alias of Antitone.map_ciInf_of_continuousAt.


An antitone function continuous at the indexed infimum over a nonempty Sort sends this indexed infimum to the indexed supremum of the composition.

theorem AntitoneOn.map_csSup_of_continuousWithinAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousWithinAt f A (sSup A)) (Af : AntitoneOn f A) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddAbove A) _auto✝) :
f (sSup A) = sInf (f '' A)

An antitone function continuous at the supremum of a nonempty set sends this supremum to the infimum of the image of this set.

theorem Antitone.map_csSup_of_continuousAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousAt f (sSup A)) (Af : Antitone f) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddAbove A) _auto✝) :
f (sSup A) = sInf (f '' A)

An antitone function continuous at the supremum of a nonempty set sends this supremum to the infimum of the image of this set.

@[deprecated Antitone.map_csSup_of_continuousAt]
theorem Antitone.map_sSup_of_continuousAt' {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {A : Set α} (Cf : ContinuousAt f (sSup A)) (Af : Antitone f) (A_nonemp : A.Nonempty) (A_bdd : autoParam (BddAbove A) _auto✝) :
f (sSup A) = sInf (f '' A)

Alias of Antitone.map_csSup_of_continuousAt.


An antitone function continuous at the supremum of a nonempty set sends this supremum to the infimum of the image of this set.

theorem Antitone.map_ciSup_of_continuousAt {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} [Nonempty ι] {f : αβ} {g : ια} (Cf : ContinuousAt f (iSup g)) (Af : Antitone f) (bdd : autoParam (BddAbove (Set.range g)) _auto✝) :
f (⨆ (i : ι), g i) = ⨅ (i : ι), f (g i)

An antitone function continuous at the indexed supremum over a nonempty Sort sends this indexed supremum to the indexed infimum of the composition.

@[deprecated Antitone.map_ciSup_of_continuousAt]
theorem Antitone.map_iSup_of_continuousAt' {α : Type u_1} {β : Type u_2} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} [Nonempty ι] {f : αβ} {g : ια} (Cf : ContinuousAt f (iSup g)) (Af : Antitone f) (bdd : autoParam (BddAbove (Set.range g)) _auto✝) :
f (⨆ (i : ι), g i) = ⨅ (i : ι), f (g i)

Alias of Antitone.map_ciSup_of_continuousAt.


An antitone function continuous at the indexed supremum over a nonempty Sort sends this indexed supremum to the indexed infimum of the composition.

theorem sSup_mem_closure {α : Type u_1} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] {s : Set α} (hs : s.Nonempty) :
theorem sInf_mem_closure {α : Type u_1} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] {s : Set α} (hs : s.Nonempty) :
theorem IsClosed.sSup_mem {α : Type u_1} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] {s : Set α} (hs : s.Nonempty) (hc : IsClosed s) :
sSup s s
theorem IsClosed.sInf_mem {α : Type u_1} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] {s : Set α} (hs : s.Nonempty) (hc : IsClosed s) :
sInf s s
theorem MonotoneOn.map_sSup_of_continuousWithinAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {s : Set α} (Cf : ContinuousWithinAt f s (sSup s)) (Mf : MonotoneOn f s) (fbot : f = ) :
f (sSup s) = sSup (f '' s)

A monotone function f sending bot to bot and continuous at the supremum of a set sends this supremum to the supremum of the image of this set.

theorem Monotone.map_sSup_of_continuousAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {s : Set α} (Cf : ContinuousAt f (sSup s)) (Mf : Monotone f) (fbot : f = ) :
f (sSup s) = sSup (f '' s)

A monotone function f sending bot to bot and continuous at the supremum of a set sends this supremum to the supremum of the image of this set.

theorem Monotone.map_iSup_of_continuousAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} {f : αβ} {g : ια} (Cf : ContinuousAt f (iSup g)) (Mf : Monotone f) (fbot : f = ) :
f (⨆ (i : ι), g i) = ⨆ (i : ι), f (g i)

If a monotone function sending bot to bot is continuous at the indexed supremum over a Sort, then it sends this indexed supremum to the indexed supremum of the composition.

theorem MonotoneOn.map_sInf_of_continuousWithinAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {s : Set α} (Cf : ContinuousWithinAt f s (sInf s)) (Mf : MonotoneOn f s) (ftop : f = ) :
f (sInf s) = sInf (f '' s)

A monotone function f sending top to top and continuous at the infimum of a set sends this infimum to the infimum of the image of this set.

theorem Monotone.map_sInf_of_continuousAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {s : Set α} (Cf : ContinuousAt f (sInf s)) (Mf : Monotone f) (ftop : f = ) :
f (sInf s) = sInf (f '' s)

A monotone function f sending top to top and continuous at the infimum of a set sends this infimum to the infimum of the image of this set.

theorem Monotone.map_iInf_of_continuousAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} {f : αβ} {g : ια} (Cf : ContinuousAt f (iInf g)) (Mf : Monotone f) (ftop : f = ) :
f (iInf g) = iInf (f g)

If a monotone function sending top to top is continuous at the indexed infimum over a Sort, then it sends this indexed infimum to the indexed infimum of the composition.

theorem AntitoneOn.map_sSup_of_continuousWithinAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {s : Set α} (Cf : ContinuousWithinAt f s (sSup s)) (Af : AntitoneOn f s) (fbot : f = ) :
f (sSup s) = sInf (f '' s)

An antitone function f sending bot to top and continuous at the supremum of a set sends this supremum to the infimum of the image of this set.

theorem Antitone.map_sSup_of_continuousAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {s : Set α} (Cf : ContinuousAt f (sSup s)) (Af : Antitone f) (fbot : f = ) :
f (sSup s) = sInf (f '' s)

An antitone function f sending bot to top and continuous at the supremum of a set sends this supremum to the infimum of the image of this set.

theorem Antitone.map_iSup_of_continuousAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} {f : αβ} {g : ια} (Cf : ContinuousAt f (iSup g)) (Af : Antitone f) (fbot : f = ) :
f (⨆ (i : ι), g i) = ⨅ (i : ι), f (g i)

An antitone function sending bot to top is continuous at the indexed supremum over a Sort, then it sends this indexed supremum to the indexed supremum of the composition.

theorem AntitoneOn.map_sInf_of_continuousWithinAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {s : Set α} (Cf : ContinuousWithinAt f s (sInf s)) (Af : AntitoneOn f s) (ftop : f = ) :
f (sInf s) = sSup (f '' s)

An antitone function f sending top to bot and continuous at the infimum of a set sends this infimum to the supremum of the image of this set.

theorem Antitone.map_sInf_of_continuousAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {f : αβ} {s : Set α} (Cf : ContinuousAt f (sInf s)) (Af : Antitone f) (ftop : f = ) :
f (sInf s) = sSup (f '' s)

An antitone function f sending top to bot and continuous at the infimum of a set sends this infimum to the supremum of the image of this set.

theorem Antitone.map_iInf_of_continuousAt {α : Type u_1} {β : Type u_2} [CompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] [CompleteLinearOrder β] [TopologicalSpace β] [OrderClosedTopology β] {ι : Sort u_3} {f : αβ} {g : ια} (Cf : ContinuousAt f (iInf g)) (Af : Antitone f) (ftop : f = ) :
f (iInf g) = iSup (f g)

If an antitone function sending top to bot is continuous at the indexed infimum over a Sort, then it sends this indexed infimum to the indexed supremum of the composition.

theorem csSup_mem_closure {α : Type u_1} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] {s : Set α} (hs : s.Nonempty) (B : BddAbove s) :
theorem csInf_mem_closure {α : Type u_1} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] {s : Set α} (hs : s.Nonempty) (B : BddBelow s) :
theorem IsClosed.csSup_mem {α : Type u_1} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] {s : Set α} (hc : IsClosed s) (hs : s.Nonempty) (B : BddAbove s) :
sSup s s
theorem IsClosed.csInf_mem {α : Type u_1} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] {s : Set α} (hc : IsClosed s) (hs : s.Nonempty) (B : BddBelow s) :
sInf s s
theorem IsClosed.isLeast_csInf {α : Type u_1} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] {s : Set α} (hc : IsClosed s) (hs : s.Nonempty) (B : BddBelow s) :
theorem IsClosed.isGreatest_csSup {α : Type u_1} [ConditionallyCompleteLinearOrder α] [TopologicalSpace α] [OrderTopology α] {s : Set α} (hc : IsClosed s) (hs : s.Nonempty) (B : BddAbove s) :
theorem MonotoneOn.tendsto_nhdsWithin_Ioo_left {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} {x : α} {y : α} (h_nonempty : (Set.Ioo y x).Nonempty) (Mf : MonotoneOn f (Set.Ioo y x)) (h_bdd : BddAbove (f '' Set.Ioo y x)) :
theorem MonotoneOn.tendsto_nhdsWithin_Ioo_right {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} {x : α} {y : α} (h_nonempty : (Set.Ioo x y).Nonempty) (Mf : MonotoneOn f (Set.Ioo x y)) (h_bdd : BddBelow (f '' Set.Ioo x y)) :
theorem MonotoneOn.tendsto_nhdsWithin_Iio {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} {x : α} (Mf : MonotoneOn f (Set.Iio x)) (h_bdd : BddAbove (f '' Set.Iio x)) :
theorem MonotoneOn.tendsto_nhdsWithin_Ioi {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} {x : α} (Mf : MonotoneOn f (Set.Ioi x)) (h_bdd : BddBelow (f '' Set.Ioi x)) :
theorem Monotone.tendsto_nhdsWithin_Iio {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} (Mf : Monotone f) (x : α) :

A monotone map has a limit to the left of any point x, equal to sSup (f '' (Iio x)).

theorem Monotone.tendsto_nhdsWithin_Ioi {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} (Mf : Monotone f) (x : α) :

A monotone map has a limit to the right of any point x, equal to sInf (f '' (Ioi x)).

theorem AntitoneOn.tendsto_nhdsWithin_Ioo_left {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} {x : α} {y : α} (h_nonempty : (Set.Ioo y x).Nonempty) (Af : AntitoneOn f (Set.Ioo y x)) (h_bdd : BddBelow (f '' Set.Ioo y x)) :
theorem AntitoneOn.tendsto_nhdsWithin_Ioo_right {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} {x : α} {y : α} (h_nonempty : (Set.Ioo x y).Nonempty) (Af : AntitoneOn f (Set.Ioo x y)) (h_bdd : BddAbove (f '' Set.Ioo x y)) :
theorem AntitoneOn.tendsto_nhdsWithin_Iio {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} {x : α} (Af : AntitoneOn f (Set.Iio x)) (h_bdd : BddBelow (f '' Set.Iio x)) :
theorem AntitoneOn.tendsto_nhdsWithin_Ioi {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} {x : α} (Af : AntitoneOn f (Set.Ioi x)) (h_bdd : BddAbove (f '' Set.Ioi x)) :
theorem Antitone.tendsto_nhdsWithin_Iio {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} (Af : Antitone f) (x : α) :

An antitone map has a limit to the left of any point x, equal to sInf (f '' (Iio x)).

theorem Antitone.tendsto_nhdsWithin_Ioi {α : Type u_3} {β : Type u_4} [LinearOrder α] [TopologicalSpace α] [OrderTopology α] [ConditionallyCompleteLinearOrder β] [TopologicalSpace β] [OrderTopology β] {f : αβ} (Af : Antitone f) (x : α) :

An antitone map has a limit to the right of any point x, equal to sSup (f '' (Ioi x)).