HepLean Documentation

Mathlib.Topology.UniformSpace.Compact

Compact sets in uniform spaces #

theorem lebesgue_number_lemma {α : Type ua} [UniformSpace α] {K : Set α} {ι : Sort u_2} {U : ιSet α} (hK : IsCompact K) (hopen : ∀ (i : ι), IsOpen (U i)) (hcover : K ⋃ (i : ι), U i) :
Vuniformity α, xK, ∃ (i : ι), UniformSpace.ball x V U i

Let c : ι → Set α be an open cover of a compact set s. Then there exists an entourage n such that for each x ∈ s its n-neighborhood is contained in some c i.

theorem Filter.HasBasis.lebesgue_number_lemma {α : Type ua} [UniformSpace α] {K : Set α} {ι' : Sort u_2} {ι : Sort u_3} {p : ι'Prop} {V : ι'Set (α × α)} {U : ιSet α} (hbasis : (uniformity α).HasBasis p V) (hK : IsCompact K) (hopen : ∀ (j : ι), IsOpen (U j)) (hcover : K ⋃ (j : ι), U j) :
∃ (i : ι'), p i xK, ∃ (j : ι), UniformSpace.ball x (V i) U j

Let U : ι → Set α be an open cover of a compact set K. Then there exists an entourage V such that for each x ∈ K its V-neighborhood is included in some U i.

Moreover, one can choose an entourage from a given basis.

theorem lebesgue_number_lemma_sUnion {α : Type ua} [UniformSpace α] {K : Set α} {S : Set (Set α)} (hK : IsCompact K) (hopen : sS, IsOpen s) (hcover : K ⋃₀ S) :
Vuniformity α, xK, sS, UniformSpace.ball x V s

Let c : Set (Set α) be an open cover of a compact set s. Then there exists an entourage n such that for each x ∈ s its n-neighborhood is contained in some t ∈ c.

theorem IsCompact.nhdsSet_basis_uniformity {α : Type ua} {ι : Sort u_1} [UniformSpace α] {K : Set α} {p : ιProp} {V : ιSet (α × α)} (hbasis : (uniformity α).HasBasis p V) (hK : IsCompact K) :
(nhdsSet K).HasBasis p fun (i : ι) => xK, UniformSpace.ball x (V i)

If K is a compact set in a uniform space and {V i | p i} is a basis of entourages, then {⋃ x ∈ K, UniformSpace.ball x (V i) | p i} is a basis of 𝓝ˢ K.

Here "{s i | p i} is a basis of a filter l" means Filter.HasBasis l p s.

theorem Disjoint.exists_uniform_thickening {α : Type ua} [UniformSpace α] {A B : Set α} (hA : IsCompact A) (hB : IsClosed B) (h : Disjoint A B) :
Vuniformity α, Disjoint (⋃ xA, UniformSpace.ball x V) (⋃ xB, UniformSpace.ball x V)
theorem Disjoint.exists_uniform_thickening_of_basis {α : Type ua} {ι : Sort u_1} [UniformSpace α] {p : ιProp} {s : ιSet (α × α)} (hU : (uniformity α).HasBasis p s) {A B : Set α} (hA : IsCompact A) (hB : IsClosed B) (h : Disjoint A B) :
∃ (i : ι), p i Disjoint (⋃ xA, UniformSpace.ball x (s i)) (⋃ xB, UniformSpace.ball x (s i))
theorem lebesgue_number_of_compact_open {α : Type ua} [UniformSpace α] {K U : Set α} (hK : IsCompact K) (hU : IsOpen U) (hKU : K U) :
Vuniformity α, IsOpen V xK, UniformSpace.ball x V U

A useful consequence of the Lebesgue number lemma: given any compact set K contained in an open set U, we can find an (open) entourage V such that the ball of size V about any point of K is contained in U.

On a compact uniform space, the topology determines the uniform structure, entourages are exactly the neighborhoods of the diagonal.

theorem compactSpace_uniformity {α : Type ua} [UniformSpace α] [CompactSpace α] :
uniformity α = ⨆ (x : α), nhds (x, x)

On a compact uniform space, the topology determines the uniform structure, entourages are exactly the neighborhoods of the diagonal.

theorem unique_uniformity_of_compact {γ : Type uc} [t : TopologicalSpace γ] [CompactSpace γ] {u u' : UniformSpace γ} (h : UniformSpace.toTopologicalSpace = t) (h' : UniformSpace.toTopologicalSpace = t) :
u = u'