HepLean Documentation

Std.Sat.AIG.Basic

This module contains the basic definitions for an AIG (And Inverter Graph) in the style of AIGNET, as described in https://arxiv.org/pdf/1304.7861.pdf section 3. It consists of an AIG definition, a description of its semantics and basic operations to construct nodes in the AIG.

inductive Std.Sat.AIG.Decl (α : Type) :

A circuit node. These are not recursive but instead contain indices into an AIG, with inputs indexed by α.

  • const: {α : Type} → BoolStd.Sat.AIG.Decl α

    A node with a constant output value.

  • atom: {α : Type} → αStd.Sat.AIG.Decl α

    An input node to the circuit.

  • gate: {α : Type} → NatNatBoolBoolStd.Sat.AIG.Decl α

    An AIG gate with configurable input nodes and polarity. l and r are the input node indices while linv and rinv say whether there is an inverter on the left and right inputs, respectively.

Instances For
    instance Std.Sat.AIG.instHashableDecl :
    {α : Type} → [inst : Hashable α] → Hashable (Std.Sat.AIG.Decl α)
    Equations
    • Std.Sat.AIG.instHashableDecl = { hash := Std.Sat.AIG.hashDecl✝ }
    instance Std.Sat.AIG.instReprDecl :
    {α : Type} → [inst : Repr α] → Repr (Std.Sat.AIG.Decl α)
    Equations
    • Std.Sat.AIG.instReprDecl = { reprPrec := Std.Sat.AIG.reprDecl✝ }
    Equations
    • Std.Sat.AIG.instDecidableEqDecl = Std.Sat.AIG.decEqDecl✝
    Equations

    Cache.WF xs is a predicate asserting that a cache : HashMap (Decl α) Nat is a valid lookup cache for xs : Array (Decl α), that is, whenever cache.find? decl returns an index into xs : Array Decl, xs[index] = decl. Note that this predicate does not force the cache to be complete, if there is no entry in the cache for some node, it can still exist in the AIG.

    Instances For

      A cache for reusing elements from decls if they are available.

      Equations
      Instances For
        @[irreducible]

        Create an empty Cache, valid with respect to any Array Decl.

        Equations
        Instances For
          @[irreducible]
          def Std.Sat.AIG.Cache.noUpdate {α : Type} [Hashable α] [DecidableEq α] {decls : Array (Std.Sat.AIG.Decl α)} {decl : Std.Sat.AIG.Decl α} (cache : Std.Sat.AIG.Cache α decls) :
          Std.Sat.AIG.Cache α (decls.push decl)

          Given a cache, valid with respect to some decls, we can extend the decls without extending the cache and remain valid.

          Equations
          • cache.noUpdate = cache.val,
          Instances For
            @[irreducible]
            def Std.Sat.AIG.Cache.insert {α : Type} [Hashable α] [DecidableEq α] (decls : Array (Std.Sat.AIG.Decl α)) (cache : Std.Sat.AIG.Cache α decls) (decl : Std.Sat.AIG.Decl α) :
            Std.Sat.AIG.Cache α (decls.push decl)

            Given a cache, valid with respect to some decls, we can extend the decls and the cache at the same time with the same values and remain valid.

            Equations
            Instances For
              structure Std.Sat.AIG.CacheHit {α : Type} (decls : Array (Std.Sat.AIG.Decl α)) (decl : Std.Sat.AIG.Decl α) :

              Contains the index of decl in decls along with a proof that the index is indeed correct.

              • idx : Nat
              • hbound : self.idx < decls.size
              • hvalid : decls[self.idx] = decl
              Instances For
                theorem Std.Sat.AIG.CacheHit.hbound {α : Type} {decls : Array (Std.Sat.AIG.Decl α)} {decl : Std.Sat.AIG.Decl α} (self : Std.Sat.AIG.CacheHit decls decl) :
                self.idx < decls.size
                theorem Std.Sat.AIG.CacheHit.hvalid {α : Type} {decls : Array (Std.Sat.AIG.Decl α)} {decl : Std.Sat.AIG.Decl α} (self : Std.Sat.AIG.CacheHit decls decl) :
                decls[self.idx] = decl
                theorem Std.Sat.AIG.Cache.get?_bounds {α : Type} [Hashable α] [DecidableEq α] {decls : Array (Std.Sat.AIG.Decl α)} {idx : Nat} (c : Std.Sat.AIG.Cache α decls) (decl : Std.Sat.AIG.Decl α) (hfound : c.val[decl]? = some idx) :
                idx < decls.size

                For a c : Cache α decls, any index idx that is a cache hit for some decl is within bounds of decls (i.e. idx < decls.size).

                theorem Std.Sat.AIG.Cache.get?_property {α : Type} [Hashable α] [DecidableEq α] {decls : Array (Std.Sat.AIG.Decl α)} {idx : Nat} (c : Std.Sat.AIG.Cache α decls) (decl : Std.Sat.AIG.Decl α) (hfound : c.val[decl]? = some idx) :
                decls[idx] = decl

                If Cache.get? decl returns some i then decls[i] = decl holds.

                opaque Std.Sat.AIG.Cache.get? {α : Type} [Hashable α] [DecidableEq α] {decls : Array (Std.Sat.AIG.Decl α)} (cache : Std.Sat.AIG.Cache α decls) (decl : Std.Sat.AIG.Decl α) :

                Lookup a Decl in a Cache.

                def Std.Sat.AIG.IsDAG (α : Type) (decls : Array (Std.Sat.AIG.Decl α)) :

                An Array Decl is a Direct Acyclic Graph (DAG) if a gate at index i only points to nodes with index lower than i.

                Equations
                Instances For

                  The empty array is a DAG.

                  structure Std.Sat.AIG (α : Type) [DecidableEq α] [Hashable α] :

                  An And Inverter Graph together with a cache for subterm sharing.

                  Instances For
                    theorem Std.Sat.AIG.invariant {α : Type} [DecidableEq α] [Hashable α] (self : Std.Sat.AIG α) :
                    Std.Sat.AIG.IsDAG α self.decls

                    In order to be a valid AIG, decls must form a DAG.

                    An AIG with an empty AIG and cache.

                    Equations
                    Instances For
                      def Std.Sat.AIG.Mem {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) (a : α) :

                      The atom a occurs in aig.

                      Equations
                      Instances For
                        Equations
                        • Std.Sat.AIG.instMembership = { mem := Std.Sat.AIG.Mem }
                        structure Std.Sat.AIG.Ref {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) :

                        A reference to a node within an AIG. This is the AIG analog of Bool.

                        • gate : Nat
                        • hgate : self.gate < aig.decls.size
                        Instances For
                          theorem Std.Sat.AIG.Ref.hgate {α : Type} [Hashable α] [DecidableEq α] {aig : Std.Sat.AIG α} (self : aig.Ref) :
                          self.gate < aig.decls.size
                          @[inline]
                          def Std.Sat.AIG.Ref.cast {α : Type} [Hashable α] [DecidableEq α] {aig1 : Std.Sat.AIG α} {aig2 : Std.Sat.AIG α} (ref : aig1.Ref) (h : aig1.decls.size aig2.decls.size) :
                          aig2.Ref

                          A Ref into aig1 is also valid for aig2 if aig1 is smaller than aig2.

                          Equations
                          • ref.cast h = { gate := ref.gate, hgate := }
                          Instances For
                            structure Std.Sat.AIG.BinaryInput {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) :

                            A pair of Refs, useful for LawfulOperators that act on two Refs at a time.

                            • lhs : aig.Ref
                            • rhs : aig.Ref
                            Instances For
                              @[inline]
                              def Std.Sat.AIG.BinaryInput.cast {α : Type} [Hashable α] [DecidableEq α] {aig1 : Std.Sat.AIG α} {aig2 : Std.Sat.AIG α} (input : aig1.BinaryInput) (h : aig1.decls.size aig2.decls.size) :
                              aig2.BinaryInput

                              The Ref.cast equivalent for BinaryInput.

                              Equations
                              • input.cast h = { lhs := input.lhs.cast h, rhs := input.rhs.cast h }
                              Instances For
                                structure Std.Sat.AIG.TernaryInput {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) :

                                A collection of 3 of Refs, useful for LawfulOperators that act on three Refs at a time, in particular multiplexer style functions.

                                • discr : aig.Ref
                                • lhs : aig.Ref
                                • rhs : aig.Ref
                                Instances For
                                  @[inline]
                                  def Std.Sat.AIG.TernaryInput.cast {α : Type} [Hashable α] [DecidableEq α] {aig1 : Std.Sat.AIG α} {aig2 : Std.Sat.AIG α} (input : aig1.TernaryInput) (h : aig1.decls.size aig2.decls.size) :
                                  aig2.TernaryInput

                                  The Ref.cast equivalent for TernaryInput.

                                  Equations
                                  • input.cast h = { discr := input.discr.cast h, lhs := input.lhs.cast h, rhs := input.rhs.cast h }
                                  Instances For

                                    An entrypoint into an AIG. This can be used to evaluate a circuit, starting at a certain node, with AIG.denote or to construct bigger circuits on top of this specific node.

                                    • aig : Std.Sat.AIG α

                                      The AIG that we are in.

                                    • ref : self.aig.Ref

                                      The reference to the node in aig that this Entrypoint targets.

                                    Instances For

                                      Transform an Entrypoint into a graphviz string. Useful for debugging purposes.

                                      Equations
                                      • One or more equations did not get rendered due to their size.
                                      Instances For
                                        @[irreducible]
                                        def Std.Sat.AIG.toGraphviz.go {α : Type} [DecidableEq α] [ToString α] [Hashable α] (acc : String) (decls : Array (Std.Sat.AIG.Decl α)) (hinv : Std.Sat.AIG.IsDAG α decls) (idx : Nat) (hidx : idx < decls.size) :
                                        StateM (Std.HashSet (Fin decls.size)) String
                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For
                                          Equations
                                          Instances For
                                            def Std.Sat.AIG.toGraphviz.toGraphvizString {α : Type} [DecidableEq α] [ToString α] [Hashable α] (decls : Array (Std.Sat.AIG.Decl α)) (idx : Fin decls.size) :
                                            Equations
                                            • One or more equations did not get rendered due to their size.
                                            Instances For
                                              structure Std.Sat.AIG.RefVec {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) (w : Nat) :

                                              A vector of references into aig. This is the AIG analog of BitVec.

                                              • refs : Array Nat
                                              • hlen : self.refs.size = w
                                              • hrefs : ∀ {i : Nat} (h : i < w), self.refs[i] < aig.decls.size
                                              Instances For
                                                theorem Std.Sat.AIG.RefVec.hlen {α : Type} [Hashable α] [DecidableEq α] {aig : Std.Sat.AIG α} {w : Nat} (self : aig.RefVec w) :
                                                self.refs.size = w
                                                theorem Std.Sat.AIG.RefVec.hrefs {α : Type} [Hashable α] [DecidableEq α] {aig : Std.Sat.AIG α} {w : Nat} (self : aig.RefVec w) {i : Nat} (h : i < w) :
                                                self.refs[i] < aig.decls.size
                                                structure Std.Sat.AIG.RefVecEntry (α : Type) [DecidableEq α] [Hashable α] [DecidableEq α] (w : Nat) :

                                                A sequence of references bundled with their AIG.

                                                Instances For
                                                  structure Std.Sat.AIG.ShiftTarget {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) (w : Nat) :

                                                  A RefVec bundled with constant distance to be shifted by.

                                                  • vec : aig.RefVec w
                                                  • distance : Nat
                                                  Instances For
                                                    structure Std.Sat.AIG.ArbitraryShiftTarget {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) (m : Nat) :

                                                    A RefVec bundled with a RefVec as distance to be shifted by.

                                                    • n : Nat
                                                    • target : aig.RefVec m
                                                    • distance : aig.RefVec self.n
                                                    Instances For
                                                      structure Std.Sat.AIG.ExtendTarget {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) (newWidth : Nat) :

                                                      A RefVec to be extended to newWidth.

                                                      • w : Nat
                                                      • vec : aig.RefVec self.w
                                                      Instances For
                                                        def Std.Sat.AIG.denote {α : Type} [Hashable α] [DecidableEq α] (assign : αBool) (entry : Std.Sat.AIG.Entrypoint α) :

                                                        Evaluate an AIG.Entrypoint using some assignment for atoms.

                                                        Equations
                                                        Instances For
                                                          @[irreducible]
                                                          def Std.Sat.AIG.denote.go {α : Type} (x : Nat) (decls : Array (Std.Sat.AIG.Decl α)) (assign : αBool) (h1 : x < decls.size) (h2 : Std.Sat.AIG.IsDAG α decls) :
                                                          Equations
                                                          • One or more equations did not get rendered due to their size.
                                                          Instances For

                                                            Denotation of an AIG at a specific Entrypoint.

                                                            Equations
                                                            • One or more equations did not get rendered due to their size.
                                                            Instances For

                                                              Denotation of an AIG at a specific Entrypoint with the Entrypoint being constructed on the fly.

                                                              Equations
                                                              • One or more equations did not get rendered due to their size.
                                                              Instances For
                                                                Equations
                                                                • One or more equations did not get rendered due to their size.
                                                                Instances For
                                                                  def Std.Sat.AIG.UnsatAt {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) (start : Nat) (h : start < aig.decls.size) :

                                                                  The denotation of the sub-DAG in the aig at node start is false for all assignments.

                                                                  Equations
                                                                  • aig.UnsatAt start h = ∀ (assign : αBool), assign, { aig := aig, ref := { gate := start, hgate := h } } = false
                                                                  Instances For

                                                                    The denotation of the Entrypoint is false for all assignments.

                                                                    Equations
                                                                    • entry.Unsat = entry.aig.UnsatAt entry.ref.gate
                                                                    Instances For
                                                                      structure Std.Sat.AIG.Fanin {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) :

                                                                      An input to an AIG gate.

                                                                      • ref : aig.Ref

                                                                        The node we are referring to.

                                                                      • inv : Bool

                                                                        Whether the node is inverted

                                                                      Instances For
                                                                        @[inline]
                                                                        def Std.Sat.AIG.Fanin.cast {α : Type} [Hashable α] [DecidableEq α] {aig1 : Std.Sat.AIG α} {aig2 : Std.Sat.AIG α} (fanin : aig1.Fanin) (h : aig1.decls.size aig2.decls.size) :
                                                                        aig2.Fanin

                                                                        The Ref.cast equivalent for Fanin.

                                                                        Equations
                                                                        • fanin.cast h = { ref := fanin.ref.cast h, inv := fanin.inv }
                                                                        Instances For
                                                                          structure Std.Sat.AIG.GateInput {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) :

                                                                          The input type for creating AIG and gates.

                                                                          • lhs : aig.Fanin
                                                                          • rhs : aig.Fanin
                                                                          Instances For
                                                                            @[inline]
                                                                            def Std.Sat.AIG.GateInput.cast {α : Type} [Hashable α] [DecidableEq α] {aig1 : Std.Sat.AIG α} {aig2 : Std.Sat.AIG α} (input : aig1.GateInput) (h : aig1.decls.size aig2.decls.size) :
                                                                            aig2.GateInput

                                                                            The Ref.cast equivalent for GateInput.

                                                                            Equations
                                                                            • input.cast h = { lhs := input.lhs.cast h, rhs := input.rhs.cast h }
                                                                            Instances For
                                                                              def Std.Sat.AIG.mkGate {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) (input : aig.GateInput) :

                                                                              Add a new and inverter gate to the AIG in aig. Note that this version is only meant for proving, for production purposes use AIG.mkGateCached and equality theorems to this one.

                                                                              Equations
                                                                              • One or more equations did not get rendered due to their size.
                                                                              Instances For
                                                                                def Std.Sat.AIG.mkAtom {α : Type} [Hashable α] [DecidableEq α] (aig : Std.Sat.AIG α) (n : α) :

                                                                                Add a new input node to the AIG in aig. Note that this version is only meant for proving, for production purposes use AIG.mkAtomCached and equality theorems to this one.

                                                                                Equations
                                                                                • aig.mkAtom n = { aig := { decls := aig.decls.push (Std.Sat.AIG.Decl.atom n), cache := aig.cache.noUpdate, invariant := }, ref := { gate := aig.decls.size, hgate := } }
                                                                                Instances For

                                                                                  Add a new constant node to aig. Note that this version is only meant for proving, for production purposes use AIG.mkConstCached and equality theorems to this one.

                                                                                  Equations
                                                                                  • aig.mkConst val = { aig := { decls := aig.decls.push (Std.Sat.AIG.Decl.const val), cache := aig.cache.noUpdate, invariant := }, ref := { gate := aig.decls.size, hgate := } }
                                                                                  Instances For