Permutations of MSSM charges and solutions #
The three family MSSM charges has a family permutation of S₃⁶. This file defines this group and its action on the MSSM.
The group of family permutations is S₃⁶
Equations
- MSSM.PermGroup = (Fin 6 → Equiv.Perm (Fin 3))
Instances For
The type PermGroup
has a group instances derived from the group instance of it's target.
Equations
- MSSM.instGroupPermGroup = Pi.group
@[simp]
theorem
MSSM.chargeMap_apply
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
:
(MSSM.chargeMap f) S = MSSMCharges.toSMPlusH.symm
(MSSMCharges.splitSMPlusH.symm
(MSSMCharges.toSpeciesMaps'.symm fun (i : Fin 6) => (MSSMCharges.toSMSpecies i) S ∘ ⇑(f i),
MSSMCharges.toSMPlusH S ∘ Sum.inr))
The image of an element of permGroup
under the representation on charges.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
MSSM.chargeMap_toSpecies
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
(j : Fin 6)
:
(MSSMCharges.toSMSpecies j) ((MSSM.chargeMap f) S) = (MSSMCharges.toSMSpecies j) S ∘ ⇑(f j)
The representation of permGroup
acting on the vector space of charges.
Equations
- MSSM.repCharges = { toFun := fun (f : MSSM.PermGroup) => MSSM.chargeMap f⁻¹, map_one' := MSSM.repCharges.proof_1, map_mul' := MSSM.repCharges.proof_2 }
Instances For
theorem
MSSM.repCharges_toSMSpecies
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
(j : Fin 6)
:
(MSSMCharges.toSMSpecies j) ((MSSM.repCharges f) S) = (MSSMCharges.toSMSpecies j) S ∘ ⇑(f⁻¹ j)
theorem
MSSM.toSpecies_sum_invariant
(m : ℕ)
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
(j : Fin 6)
:
∑ i : Fin MSSMSpecies.numberCharges, ((fun (a : ℚ) => a ^ m) ∘ (MSSMCharges.toSMSpecies j) ((MSSM.repCharges f) S)) i = ∑ i : Fin MSSMSpecies.numberCharges, ((fun (a : ℚ) => a ^ m) ∘ (MSSMCharges.toSMSpecies j) S) i
theorem
MSSM.Hd_invariant
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
:
MSSMCharges.Hd ((MSSM.repCharges f) S) = MSSMCharges.Hd S
theorem
MSSM.Hu_invariant
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
:
MSSMCharges.Hu ((MSSM.repCharges f) S) = MSSMCharges.Hu S
theorem
MSSM.accGrav_invariant
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
:
MSSMACCs.accGrav ((MSSM.repCharges f) S) = MSSMACCs.accGrav S
theorem
MSSM.accSU2_invariant
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
:
MSSMACCs.accSU2 ((MSSM.repCharges f) S) = MSSMACCs.accSU2 S
theorem
MSSM.accSU3_invariant
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
:
MSSMACCs.accSU3 ((MSSM.repCharges f) S) = MSSMACCs.accSU3 S
theorem
MSSM.accYY_invariant
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
:
MSSMACCs.accYY ((MSSM.repCharges f) S) = MSSMACCs.accYY S
theorem
MSSM.accQuad_invariant
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
:
MSSMACCs.accQuad ((MSSM.repCharges f) S) = MSSMACCs.accQuad S
theorem
MSSM.accCube_invariant
(f : MSSM.PermGroup)
(S : MSSMCharges.Charges)
:
MSSMACCs.accCube ((MSSM.repCharges f) S) = MSSMACCs.accCube S