HepLean Documentation

HepLean.Lorentz.ComplexVector.Basic

Complex Lorentz vectors #

We define complex Lorentz vectors in 4d space-time as representations of SL(2, C).

The representation of SL(2, ℂ) on complex vectors corresponding to contravariant Lorentz vectors. In index notation these have an up index ψⁱ.

Equations
Instances For

    The representation of SL(2, ℂ) on complex vectors corresponding to contravariant Lorentz vectors. In index notation these have a down index ψⁱ.

    Equations
    Instances For
      @[simp]
      theorem Lorentz.complexContrBasis_toFin13ℂ (i : Fin 1 Fin 3) :
      Lorentz.ContrℂModule.toFin13ℂ (Lorentz.complexContrBasis i) = Pi.single i 1
      @[simp]
      theorem Lorentz.complexContrBasis_ρ_apply (M : Matrix.SpecialLinearGroup (Fin 2) ) (i : Fin 1 Fin 3) (j : Fin 1 Fin 3) :
      (LinearMap.toMatrix Lorentz.complexContrBasis Lorentz.complexContrBasis) (Lorentz.complexContr M) i j = LorentzGroup.toComplex (Lorentz.SL2C.toLorentzGroup M) i j
      theorem Lorentz.complexContrBasis_ρ_val (M : Matrix.SpecialLinearGroup (Fin 2) ) (v : CoeSort.coe Lorentz.complexContr) :
      ((Lorentz.complexContr M) v).val = (LorentzGroup.toComplex (Lorentz.SL2C.toLorentzGroup M)).mulVec v.val

      The standard basis of complex contravariant Lorentz vectors indexed by Fin 4.

      Equations
      Instances For

        The standard basis of complex covariant Lorentz vectors.

        Equations
        Instances For
          @[simp]
          theorem Lorentz.complexCoBasis_toFin13ℂ (i : Fin 1 Fin 3) :
          Lorentz.CoℂModule.toFin13ℂ (Lorentz.complexCoBasis i) = Pi.single i 1
          @[simp]
          theorem Lorentz.complexCoBasis_ρ_apply (M : Matrix.SpecialLinearGroup (Fin 2) ) (i : Fin 1 Fin 3) (j : Fin 1 Fin 3) :
          (LinearMap.toMatrix Lorentz.complexCoBasis Lorentz.complexCoBasis) (Lorentz.complexCo M) i j = (LorentzGroup.toComplex (Lorentz.SL2C.toLorentzGroup M))⁻¹.transpose i j

          The standard basis of complex covariant Lorentz vectors indexed by Fin 4.

          Equations
          Instances For

            Relation to real #

            The semilinear map including real Lorentz vectors into complex contravariant lorentz vectors.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              theorem Lorentz.inclCongrRealLorentz_val (v : Lorentz.ContrMod 3) :
              (Lorentz.inclCongrRealLorentz v).val = Complex.ofRealHom v.toFin1dℝ
              theorem Lorentz.complexContrBasis_of_real (i : Fin 1 Fin 3) :
              Lorentz.complexContrBasis i = Lorentz.inclCongrRealLorentz (Lorentz.ContrMod.stdBasis i)
              theorem Lorentz.inclCongrRealLorentz_ρ (M : Matrix.SpecialLinearGroup (Fin 2) ) (v : Lorentz.ContrMod 3) :
              (Lorentz.complexContr M) (Lorentz.inclCongrRealLorentz v) = Lorentz.inclCongrRealLorentz (((Lorentz.Contr 3) (Lorentz.SL2C.toLorentzGroup M)) v)

              TODO: Rename.

              theorem Lorentz.SL2CRep_ρ_basis (M : Matrix.SpecialLinearGroup (Fin 2) ) (i : Fin 1 Fin 3) :
              (Lorentz.complexContr M) (Lorentz.complexContrBasis i) = j : Fin 1 Fin 3, (Lorentz.SL2C.toLorentzGroup M) j i Lorentz.complexContrBasis j

              TODO: Include relation to real Lorentz vectors.