HepLean Documentation

Mathlib.Algebra.BigOperators.GroupWithZero.Action

Lemmas about group actions on big operators #

This file contains results about two kinds of actions:

Note that analogous lemmas for Modules like Finset.sum_smul appear in other files.

theorem List.smul_sum {α : Type u_1} {β : Type u_2} [AddMonoid β] [DistribSMul α β] {r : α} {l : List β} :
r l.sum = (List.map (fun (x : β) => r x) l).sum
theorem List.smul_prod' {α : Type u_1} {β : Type u_2} [Monoid α] [Monoid β] [MulDistribMulAction α β] {r : α} {l : List β} :
r l.prod = (List.map (fun (x : β) => r x) l).prod
theorem Multiset.smul_sum {α : Type u_1} {β : Type u_2} [AddCommMonoid β] [DistribSMul α β] {r : α} {s : Multiset β} :
r s.sum = (Multiset.map (fun (x : β) => r x) s).sum
theorem Finset.smul_sum {α : Type u_1} {β : Type u_2} {γ : Type u_3} [AddCommMonoid β] [DistribSMul α β] {r : α} {f : γβ} {s : Finset γ} :
r xs, f x = xs, r f x
theorem Multiset.smul_prod' {α : Type u_1} {β : Type u_2} [Monoid α] [CommMonoid β] [MulDistribMulAction α β] {r : α} {s : Multiset β} :
r s.prod = (Multiset.map (fun (x : β) => r x) s).prod
theorem Finset.smul_prod' {α : Type u_1} {β : Type u_2} {γ : Type u_3} [Monoid α] [CommMonoid β] [MulDistribMulAction α β] {r : α} {f : γβ} {s : Finset γ} :
r xs, f x = xs, r f x
theorem smul_finprod' {α : Type u_1} {β : Type u_2} [Monoid α] [CommMonoid β] [MulDistribMulAction α β] {ι : Sort u_4} [Finite ι] {f : ιβ} (r : α) :
r ∏ᶠ (x : ι), f x = ∏ᶠ (x : ι), r f x
theorem Finset.smul_prod_perm {β : Type u_2} [CommMonoid β] {G : Type u_4} [Group G] [MulDistribMulAction G β] [Fintype G] (b : β) (g : G) :
g h : G, h b = h : G, h b
theorem smul_finprod_perm {β : Type u_2} [CommMonoid β] {G : Type u_4} [Group G] [MulDistribMulAction G β] [Finite G] (b : β) (g : G) :
g ∏ᶠ (h : G), h b = ∏ᶠ (h : G), h b
theorem List.smul_prod {α : Type u_1} {β : Type u_2} [Monoid α] [Monoid β] [MulAction α β] [IsScalarTower α β β] [SMulCommClass α β β] (l : List β) (m : α) :
m ^ l.length l.prod = (List.map (fun (x : β) => m x) l).prod
theorem List.vadd_sum {α : Type u_1} {β : Type u_2} [AddMonoid α] [AddMonoid β] [AddAction α β] [VAddAssocClass α β β] [VAddCommClass α β β] (l : List β) (m : α) :
l.length m +ᵥ l.sum = (List.map (fun (x : β) => m +ᵥ x) l).sum
theorem Multiset.smul_prod {α : Type u_1} {β : Type u_2} [Monoid α] [CommMonoid β] [MulAction α β] [IsScalarTower α β β] [SMulCommClass α β β] (s : Multiset β) (b : α) :
b ^ Multiset.card s s.prod = (Multiset.map (fun (x : β) => b x) s).prod
theorem Multiset.vadd_sum {α : Type u_1} {β : Type u_2} [AddMonoid α] [AddCommMonoid β] [AddAction α β] [VAddAssocClass α β β] [VAddCommClass α β β] (s : Multiset β) (b : α) :
Multiset.card s b +ᵥ s.sum = (Multiset.map (fun (x : β) => b +ᵥ x) s).sum
theorem Finset.smul_prod {α : Type u_1} {β : Type u_2} [CommMonoid β] [Monoid α] [MulAction α β] [IsScalarTower α β β] [SMulCommClass α β β] (s : Finset β) (b : α) (f : ββ) :
b ^ s.card xs, f x = xs, b f x
theorem Finset.prod_smul {α : Type u_1} {β : Type u_2} [CommMonoid β] [CommMonoid α] [MulAction α β] [IsScalarTower α β β] [SMulCommClass α β β] (s : Finset β) (b : βα) (f : ββ) :
is, b i f i = (∏ is, b i) is, f i